OPENCV形态学算法-2

时间:2023-03-09 20:14:25
OPENCV形态学算法-2

一.漫水填充算法

该算法通过一个指定的种子点,来分析整张图片上的像素,并设置像素差异阈值,在阈值类的点,最后变成相同的颜色.该方法通过上下限和连通方式来达到不同的连通效果.

该方法常用与标记和分离图像的一部分,以便于对其做进一步的分析和处理,填充的结果总是连通的区域.

API:void floodFill(源图像,掩码,Point 种子点,scaral 染色值,Rect* 重绘区域的最小边界矩形区域,scaral 与种子点颜色的负差最大值,scaral 与种子点颜色的正差最大值,int 操作方式);

注:1掩码的大小和源图像相同,掩码中不为0的区域,对应的原图中坐标的像素,在处理的时候将被忽略.

2.最小矩形是一个可选参数,默认为0

3.操作方式的第八位为4,则连通时只会向水平垂直方向蔓延,为8,还包括对角线蔓延,高八位为FLOOD_FIXED_RANGE时,上下限是和种子点颜色相比,否则,是当前像素和相邻像素差

实际使用代码如下

Mat srcImage;
Mat dstImage;
Point mousePoint;
const int g_newValueMax = ;
int g_newValue;
const int g_lodiffMax = ;
int g_lodiffValue;
const int g_updiffMax = ;
int g_updiffValue; void onMouseEvent(int eventID,int x,int y,int flag,void* userData);
void onTrackBarNewValue(int pos,void* userData);
void onTrackBarLoDiffValue(int pos,void* userData);
void onTrackBarUpDiffValue(int pos,void* userData); int main(void)
{
srcImage = imread("F:\\opencv\\OpenCVImage\\floodFill.jpg");
namedWindow("floodfill image");
namedWindow("src image"); mousePoint = Point(-,-);
g_newValue = ;
g_lodiffValue = ;
g_updiffValue = ;
setMouseCallback("src image", onMouseEvent);
createTrackbar("new value", "src image", &g_newValue, g_newValueMax,onTrackBarNewValue);
createTrackbar("updiff value", "src image", &g_updiffValue, g_updiffMax,onTrackBarUpDiffValue);
createTrackbar("lodiff value", "src image", &g_lodiffValue, g_lodiffMax,onTrackBarLoDiffValue);
onTrackBarLoDiffValue(g_lodiffValue, ); imshow("src image", srcImage); moveWindow("src image", , );
moveWindow("floodfill image", srcImage.cols, ); waitKey();
return ;
} void onMouseEvent(int eventID,int x,int y,int flag,void* userData)
{
if(eventID == EVENT_LBUTTONDOWN)
{
mousePoint = Point(x,y);
onTrackBarNewValue(g_newValue, );
}
} void onTrackBarNewValue(int pos,void* userData)
{
if(mousePoint.x >= && mousePoint.y >=)
{
Rect rect;
Mat tempImage;
tempImage = srcImage.clone();
floodFill(srcImage, mousePoint, Scalar(g_newValue,g_newValue,g_newValue),&rect,Scalar(g_lodiffValue,g_lodiffValue,g_lodiffValue),Scalar(g_updiffValue,g_updiffValue,g_updiffValue),|FLOODFILL_FIXED_RANGE);
dstImage = srcImage.clone();
srcImage = tempImage.clone();
imshow("floodfill image", dstImage);
}
else
{
dstImage = srcImage.clone();
imshow("floodfill image", dstImage);
}
}
void onTrackBarLoDiffValue(int pos,void* userData)
{
if(mousePoint.x >= && mousePoint.y >=)
{
Rect rect;
Mat tempImage;
tempImage = srcImage.clone();
floodFill(srcImage, mousePoint, Scalar(g_newValue,g_newValue,g_newValue),&rect,Scalar(g_lodiffValue,g_lodiffValue,g_lodiffValue),Scalar(g_updiffValue,g_updiffValue,g_updiffValue),|FLOODFILL_FIXED_RANGE);
dstImage = srcImage.clone();
srcImage = tempImage.clone();
imshow("floodfill image", dstImage);
}
else
{
dstImage = srcImage.clone();
imshow("floodfill image", dstImage);
}
}
void onTrackBarUpDiffValue(int pos,void* userData)
{
if(mousePoint.x >= && mousePoint.y >=)
{
Rect rect;
Mat tempImage;
tempImage = srcImage.clone();
floodFill(srcImage, mousePoint, Scalar(g_newValue,g_newValue,g_newValue),&rect,Scalar(g_lodiffValue,g_lodiffValue,g_lodiffValue),Scalar(g_updiffValue,g_updiffValue,g_updiffValue),|FLOODFILL_FIXED_RANGE);
dstImage = srcImage.clone();
srcImage = tempImage.clone();
imshow("floodfill image", dstImage);
}
else
{
dstImage = srcImage.clone();
imshow("floodfill image", dstImage);
}
}

二.图像金字塔

图像金字塔是一种对图像进行向上采样或者向下采样的算法,所谓向上向下采样,实际上就是放大图像缩小图像.

图像金字塔分为高斯金字塔和拉普拉斯金字塔,高斯金字塔向下采样,降低分辨力,拉普拉斯金字塔配合高斯金字塔,向上还原源图像

下一层图像的面积是源图像面积的1/4,采样函数分别为pyrUp和pyrDown两个函数并不是互逆的,pyrDown是一个会丢失信息的函数.

API:void pyrUp(源图,目的图,Size 放大系数,int 边缘类型)

注:向上采样并放大图像,目的图和源图的通道,深度一致,放大系数有默认值,源图长*2 宽*2

API:void pyrDown(源图,目的图,Size 放大系数,int 边缘类型)

注:向下采样并模糊一张图片,图片尺寸有默认值 源图长/2 源图宽/2,整体是源图的四分之一.

使用例程如下

Mat srcImage;
//图像放大
Mat pyrupImage;
Mat pyrupShowImage;
const int g_pyrupMax = ;
int g_pyrupCount;
void onTrackBarPyrup(int pos,void* userData); //图像缩小
Mat pyrdownImage;
Mat pyrdownShowImage;
const int g_pyrdownMax = ;
int g_pyrdownCount;
void onTrackBarPyrdown(int pos,void* userData); int main(int argc,char* argv[])
{
srcImage = imread("F:\\opencv\\OpenCVImage\\pyr.jpg");
if(srcImage.empty())
{
return -;
}
namedWindow("src image");
namedWindow("pyrup image");
namedWindow("pyrdown image"); g_pyrupCount = ;
createTrackbar("pyrup count", "pyrup image", &g_pyrupCount, g_pyrupMax,onTrackBarPyrup,);
onTrackBarPyrup(g_pyrupCount,); g_pyrdownCount = ;
createTrackbar("pyrdown count", "pyrdown image", &g_pyrdownCount, g_pyrdownMax,onTrackBarPyrdown,);
onTrackBarPyrdown(g_pyrdownCount, ); imshow("src image", srcImage); moveWindow("src image", , );
moveWindow("pyrup image", srcImage.cols, );
moveWindow("pyrdown image", srcImage.cols*, ); waitKey();
return ;
}
//图像放大
void onTrackBarPyrup(int pos,void* userData)
{
if(pos == )
{
imshow("pyrup image", srcImage);
}
else
{
Mat tempImage;
tempImage = srcImage.clone();
for(int i = ; i < pos; i++)
{
pyrUp(tempImage, pyrupImage);
tempImage = pyrupImage.clone();
}
if(pyrupImage.cols > srcImage.cols && pyrupImage.rows > srcImage.rows)
{
//pyrupShowImage = pyrupImage(Range(0,srcImage.rows),Range(0,srcImage.cols));
imshow("pyrup image", pyrupImage);
}
else
{
imshow("pyrup image", pyrupImage);
}
}
}
//图像缩小
void onTrackBarPyrdown(int pos,void* userData)
{
if(pos == )
{
imshow("pyrdown image", srcImage);
}
else
{
Mat tempImage;
tempImage = srcImage.clone();
for(int i = ; i < pos; i++)
{
pyrDown(tempImage, pyrdownImage);
tempImage = pyrdownImage.clone();
}
if(pyrdownImage.cols > srcImage.cols && pyrdownImage.rows > srcImage.rows)
{
pyrdownShowImage = pyrdownImage(Range(,srcImage.rows),Range(,srcImage.cols));
imshow("pyrdown image", pyrdownShowImage);
}
else
{
imshow("pyrdown image", pyrdownImage);
}
}
}

三.图像大小重新调整resize

resize用于将源目标精确的转换为指定大小的目标图像,在图像放大缩小的时候很有用

API: void resize(源,目标,Size 目标尺寸,double x方向缩放系数,double y方向上缩放系数,int 差值方式)

注:x方向缩放系数默认值0,函数自动根据源图像大小和目标尺寸计算,y方向缩放系数也是一样.插值方式决定了放大缩小以后的效果,主要有如下几种插值方法 INTER_LINE 线性插值INTER_NEAREST 最近邻插值  INNER_CUBIC 4*4区域内三次样条插值INNER_AREA 区域插值INNER_LANCZOS4 8*8区域内邻域插值.

插值方式的选择对于多次resize有很大影响,例子如下

//图像重新设置大小 resize
Mat srcImage;
const int g_resizeMax = ;
int g_resizeValue = ;
Mat resizeImage;
void onTrackBarResize(int pos,void* userData); int main(int argc,char* argv[])
{
srcImage = imread("F:\\opencv\\OpenCVImage\\resize.jpg"); namedWindow("src image");
namedWindow("resize image"); g_resizeValue = srcImage.rows;
createTrackbar("size value", "resize image", &g_resizeValue, g_resizeMax,onTrackBarResize,);
onTrackBarResize(g_resizeValue, ); imshow("src image", srcImage); moveWindow("src image", , );
moveWindow("resize image", srcImage.cols, ); waitKey();
return ;
} void onTrackBarResize(int pos,void* userData)
{
if(pos == )
{
imshow("resize image", srcImage);
}
else
{
//INTER_LINEAR INTER_CUBIC INTER_AREA INTER_NEAREST
resize(srcImage, resizeImage, Size(g_resizeValue,g_resizeValue),,,INTER_NEAREST);
imshow("resize image", resizeImage);
}
}

四:图像的阈值化

图像的阈值化是指通过一些算法和决策手段,将图像中的像素编程两种指定像素的集合,例如,将灰度图转换成完全的黑白图,或者直接提出低于或者高于一定值的像素.

图像的阈值化在某些场合下,对于图像的边缘提取十分有效果.

API: void Threshold(源图,目标图,double 阈值,double 最大值,int 阈值类型)

注:1.源和目标图都必须是单通道灰度图像

2.阈值类型决定了阈值化以后,图像中将仅存在哪两种像素点

THRESH_BINARY 低于阈值为0 高于阈值为给定最大值

THRESH_BINARY_INV 低于阈值为给定最大值 高于阈值为0

THRESH_TRUNC    低于阈值,保持原来像素不变,高于阈值,为阈值

THRESH_TOZERO 低于阈值为0,高于阈值保持原来值比边

THRESH_TOZERO_INV 低于阈值保持原来值比边,高于阈值为0

API:void adaptiveThreshold(源,目的,double 最大值,int 自适应算法类型,int 阈值类型,int 自适应            算法的邻域尺寸,double 减去平均或者加权平均中的常数值).

注:该算法是自适应阈值化,自动根据邻域中一个范围的值确定某一点的确定像素阈值,源和目的都需要时单通道图像,阈值类型必须为THRESH_BINARY或者是THRESH_BINARY_INV的一种,自适应算法有两种选择,ADAPTIVE_THRESH_MEAN_C  以邻域尺寸内平均值为阈值,ADAPTIVE_THRESH_GAUSSIAN_C 邻域矩阵值与高斯窗口函数交叉相关的加权综合

使用例程如下

Mat srcImage;
Mat srcSingleImage; //正y常¡ê阈D值¦Ì化¡¥
Mat thresholdImage;
const int g_thresholdMax = ;
int g_thresholdValue;
const int g_thresholdMaxMax = ;
int g_thresholdMaxValue; void onTrackBarThresholdValue(int pos,void* userData);
void onTrackBarThresholdMax(int pos,void* userData); //自Á?适º¨º应®|阈D值¦Ì化¡¥
Mat adaptiveThresholdImage;
const int g_adaptiveThresholdMaxMax = ;
int g_adaptiveThresholdMaxValue; void onTrackBarAdaptiveThresholdMax(int pos,void* userData); int main(int argc,char* argv[])
{
srcImage = imread("F:\\opencv\\OpenCVImage\\adaptiveThreshold.png");
if(srcImage.channels() == )
{
srcSingleImage = srcImage(Range(,srcImage.rows),Range(,srcImage.cols));
}
else
{
srcSingleImage = Mat(srcImage.rows, srcImage.cols, CV_8UC1);
cvtColor(srcImage, srcSingleImage, CV_RGB2GRAY);
} namedWindow("src image"); g_thresholdValue = ;
g_thresholdMaxValue = ;
namedWindow("threshold image");
createTrackbar("threshold max", "threshold image", &g_thresholdMaxValue, g_thresholdMaxMax,onTrackBarThresholdMax,);
createTrackbar("threshold value", "threshold image", &g_thresholdValue, g_thresholdMax,onTrackBarThresholdValue,);
onTrackBarThresholdValue(g_thresholdValue, ); g_adaptiveThresholdMaxValue = ;
namedWindow("adaptiveThreshold image");
createTrackbar("adaptiveThreshold Max", "adaptiveThreshold image", &g_adaptiveThresholdMaxValue, g_adaptiveThresholdMaxMax,onTrackBarAdaptiveThresholdMax,);
onTrackBarAdaptiveThresholdMax(g_adaptiveThresholdMaxValue, ); imshow("src image", srcSingleImage); moveWindow("src image", , );
moveWindow("threshold image", srcSingleImage.cols, );
moveWindow("adaptiveThreshold image", srcSingleImage.cols*, ); waitKey();
return ;
} //正y常¡ê阈D值¦Ì化¡¥,需¨¨要°a指?定¡§阈D值¦Ì以°?及¡ã最Á?大䨮值¦Ì
void onTrackBarThresholdValue(int pos,void* userData)
{
if (g_thresholdMaxValue == )
{
imshow("threshold image", srcSingleImage);
}
else
{
threshold(srcSingleImage, thresholdImage, g_thresholdValue, (double)g_thresholdMaxValue, THRESH_BINARY);
imshow("threshold image", thresholdImage);
}
}
void onTrackBarThresholdMax(int pos,void* userData)
{
if (g_thresholdMaxValue == )
{
imshow("threshold image", srcSingleImage);
}
else
{
threshold(srcSingleImage, thresholdImage, g_thresholdValue, (double)g_thresholdMaxValue, THRESH_BINARY);
imshow("threshold image", thresholdImage);
}
} //自适应阈值化,只需要指定最大值就好了
void onTrackBarAdaptiveThresholdMax(int pos,void* userData)
{
if(g_adaptiveThresholdMaxValue == )
{
imshow("adaptiveThreshold image", srcSingleImage);
}
else
{
adaptiveThreshold(srcSingleImage, adaptiveThresholdImage, g_adaptiveThresholdMaxValue, THRESH_BINARY, ADAPTIVE_THRESH_MEAN_C, , );
imshow("adaptiveThreshold image", adaptiveThresholdImage);
}
}