android so壳入口浅析

时间:2021-12-06 12:23:26

本文转自http://www.9hao.info/pages/2014/08/android-soke-ru-kou-q

前言

  开年来开始接触一些加固样本,基本都对了so进行了处理,拖入ida一看,要么没有 JNI_OnLoad ,要么 JNI_OnLoad 汇编代码羞涩难懂,让人无法下手。 JNI_OnLoad 是真正入口么?

先看看几个文档

1 摘自属性服务一节(《深入理解Android卷1》)

 利用gcc的constructor属性,这个属性指明了一个__libc_prenit函数(这个函数内部就将完成共享内存到本地进程的映射工作)。用法:当bionic libc库被加载时,将自动调用__libc_prenit函数。这样在bionic libc动态库被装载时,系统属性缓冲区地址就被确定了,后续的API调用就能找对位置了。

/* We flag the __libc_preinit function as a constructor to ensure * that its address is listed in libc.so's .init_array section. * This ensures that the function is called by the dynamic linker * as soon as the shared library is loaded. */ 

//constructor属性指示加载器加载该库之后,首先调用__libc_prenit函数。这一点和windows上的动态库的DllMain函数类似
void __attribute__((constructor)) __libc_prenit(void);

从英文说明里面提到到.init_array section,我们可以搜索一下这一节的说明

2 .init_array section

.init_array contains pointers to blocks of code that need to be executed when an application is being initialized (before main() is called). It is used for a number of things, but the primary use is in C++ for running static constructors; a secondary use that is sometimes used is to initialize IO systems in the C library.
If you are not using C++ you may (depending on your C library) be able to live without it entirely; but you’d need to hack your startup code to deal with this.
.init_array probably ends up in ram because its marked read/write — that happens because in a dynamic linking environment the dynamic linker has to fix up all the pointers it contains before it can be used. In a static environment you might be able to get away with forcing it into a read-only section.
来源: <http://blog.sina.com.cn/s/blog_a9303fd901019kvq.html>

3 摘自dlopen小结(《程序员的自我修养》)

动态连接器在加载模块时,会执行".init"段的代码,用以完成模块的初始化工作,dlopen的加载过程基本跟动态连接器一致,在完成装载、映射和重定向以后,就会执行".init"段的代码然后返回

看完这个3段资料,我们可以知道在系统加载so,在完成装载、映射和重定向以后,就首先执行.init.init_array段的代码.

探本溯源,在源码中追踪

我们先从System.loadLibrary ->Runtime.loadLibrary

  public void loadLibrary(String libName) {
loadLibrary(libName, VMStack.getCallingClassLoader());
}
/*
* Loads and links a library without security checks.
*/
void loadLibrary(String libraryName, ClassLoader loader) {
代码略...
String error = nativeLoad(filename, loader);
代码略...
}

-> nativeLoad

static void Dalvik_java_lang_Runtime_nativeLoad(const u4* args,
JValue* pResult)
{
代码略...
StringObject* fileNameObj = (StringObject*) args[];
success = dvmLoadNativeCode(fileName, classLoader, &reason);
代码略...
}

来源: <http://androidxref.com/4.1.2/xref/dalvik/vm/native/java_lang_Runtime.cpp#72>

->dvmLoadNativeCode

bool dvmLoadNativeCode(const char* pathName, Object* classLoader,
char** detail)
{
代码略...
handle = dlopen(pathName, RTLD_LAZY); 代码略...
vonLoad = dlsym(handle, "JNI_OnLoad");
if (vonLoad == NULL) {
ALOGD("No JNI_OnLoad found in %s %p, skipping init",
pathName, classLoader);
} else {
/*
* Call JNI_OnLoad. We have to override the current class
* loader, which will always be "null" since the stuff at the
* top of the stack is around Runtime.loadLibrary(). (See
* the comments in the JNI FindClass function.)
*/
OnLoadFunc func = (OnLoadFunc)vonLoad;
Object* prevOverride = self->classLoaderOverride; self->classLoaderOverride = classLoader;
oldStatus = dvmChangeStatus(self, THREAD_NATIVE);
if (gDvm.verboseJni) {
ALOGI("[Calling JNI_OnLoad for \"%s\"]", pathName);
}
version = (*func)(gDvmJni.jniVm, NULL);
dvmChangeStatus(self, oldStatus);
self->classLoaderOverride = prevOverride;
}
代码略...
}

来源: <http://androidxref.com/4.1.2/xref/dalvik/vm/Native.cpp#318>

通过dvmLoadNativeCode函数我们知道系统用dlopen加载so完成后,会查看有没有JNI_OnLoad函数,有的话就调用.

我们再到dlopen函数探个究竟:

void *dlopen(const char *filename, int flag)
{
soinfo *ret; pthread_mutex_lock(&dl_lock);
/*find_library 会判断so是否已经加载,如果没有加载,对so进行加载,完成一些初始化工作,有兴趣的读者可自行分析 */
ret = find_library(filename);
if (unlikely(ret == NULL)) {
set_dlerror(DL_ERR_CANNOT_LOAD_LIBRARY);
} else {
call_constructors_recursive(ret);
ret->refcount++;
}
pthread_mutex_unlock(&dl_lock);
return ret;
}

->call_constructors_recursive

void call_constructors_recursive(soinfo *si)
{
if (si->constructors_called)
return; // Set this before actually calling the constructors, otherwise it doesn't
// protect against recursive constructor calls. One simple example of
// constructor recursion is the libc debug malloc, which is implemented in
// libc_malloc_debug_leak.so:
// 1. The program depends on libc, so libc's constructor is called here.
// 2. The libc constructor calls dlopen() to load libc_malloc_debug_leak.so.
// 3. dlopen() calls call_constructors_recursive() with the newly created
// soinfo for libc_malloc_debug_leak.so.
// 4. The debug so depends on libc, so call_constructors_recursive() is
// called again with the libc soinfo. If it doesn't trigger the early-
// out above, the libc constructor will be called again (recursively!).
si->constructors_called = ; if (si->flags & FLAG_EXE) {
TRACE("[ %5d Calling preinit_array @ 0x%08x [%d] for '%s' ]\n",
pid, (unsigned)si->preinit_array, si->preinit_array_count,
si->name);
call_array(si->preinit_array, si->preinit_array_count, );
TRACE("[ %5d Done calling preinit_array for '%s' ]\n", pid, si->name);
} else {
if (si->preinit_array) {
DL_ERR("%5d Shared library '%s' has a preinit_array table @ 0x%08x."
" This is INVALID.", pid, si->name,
(unsigned)si->preinit_array);
}
} 代码略... if (si->init_func) {
TRACE("[ %5d Calling init_func @ 0x%08x for '%s' ]\n", pid,
(unsigned)si->init_func, si->name);
si->init_func();
TRACE("[ %5d Done calling init_func for '%s' ]\n", pid, si->name);
}
if (si->init_array) {
TRACE("[ %5d Calling init_array @ 0x%08x [%d] for '%s' ]\n", pid,
(unsigned)si->init_array, si->init_array_count, si->name);
//遍历函数数组并执行
call_array(si->init_array, si->init_array_count, );
TRACE("[ %5d Done calling init_array for '%s' ]\n", pid, si->name);
//ps:看到这么多TRACE这么多调试信息,我们把调试开关打开,是不是能拿到诸多信息?
}
}
来源: <http://androidxref.com/4.1.2/xref/bionic/linker/linker.c#1519>

通过可以函数我们知道si->init_funcsi->init_array存在的时候,会执行指向的函数
(不知道大家注意到么si->flags & FLAG_EXE时,还有si->preinit_array? 以后会不会有这方面的东西?)
再找下 si->init_funcsi->init_array 的赋值

 case DT_INIT:
si->init_func = (void (*)(void))(si->base + *d);
DEBUG("%5d %s constructors (init func) found at %p\n",
pid, si->name, si->init_func); case DT_INIT_ARRAY:
si->init_array = (unsigned *)(si->base + *d);
DEBUG("%5d %s constructors (init_array) found at %p\n",
pid, si->name, si->init_array);
break;

DEBUG里面说明了constructors (init func)和constructors (init_array)。
  我们再看看一份文档Android Dynamic Linker Design Notes

DT_INIT
Points to the address of an initialization function
that must be called when the file is loaded.
DT_INIT_ARRAY
Points to an array of function addresses that must be
called, in-order, to perform initialization. Some of
the entries in the array can be or -, and should
be ignored. Note: this is generally stored in a .init_array section

  通过层层分析,我们很清楚知道了系统加载so,在完成装载、映射和重定向以后,就首先执行.init.init_array段的代码.

前面有一篇文章我已经对so加壳进行简单说明

把源码的dlopen复制出来修改,在把自己so加载起来的时候 ,把自己内存里面某部分地址解密后,用自己的dlopen打开返回一个soinfo结构体 然后把当前soinfo结构体替换原来的soinfo结构体

小结

  系统加载so,在完成装载、映射和重定向以后,就首先执行.init.init_array段的代码,之后如果存在JNI_OnLoad 就调用该函数.我们要对一个so进行分析,需要先看看有没有.init_array section.init section,so加壳一般会在初始化函数进行脱壳操作。

如何在.init.init_array段添加我们的函数

[] 共享构造函数,在函数声明时加上"__attribute__((constructor))"属性
void __attribute__((constructor)) init_function(void);
对应有共享虚构函数,在程序exit()或者dlclose()返回前执行
void __attribute__((destructor)) fini_function(void); []c++ 静态构造函数

.init.init_array下断点

init_array  用ida可以看到,  可以对里面的函数数组下断点
init ida有时没识别出来,可用readelf查看入口点 xxx@xx:~$ readelf -a '/home/xxx/桌面/libsecexe.so' 0x00000010 (SYMBOLIC) 0x0
0x0000000c (INIT) 0x11401
0x00000019 (INIT_ARRAY) 0x28ca4
0x0000001b (INIT_ARRAYSZ) (bytes)
0x0000001a (FINI_ARRAY) 0x28cac
0x0000001c (FINI_ARRAYSZ) (bytes)
0x00000004 (HASH) 0xf4 我们看到 INIT 入口为 0x11401
(ps:有时你在0x11401是数据,你需要make code,由于对齐关系,要从0x11401+1开始)
样本:梆梆 爱加密

参考: 
[1] 《深入理解Android卷1》
[2] 《程序员的自我修养-链接、装载与库》
[3] android linker 浅析
[4] Android Dynamic Linker Design Notes