Codeforces E. Bash Plays with Functions(积性函数DP)

时间:2023-03-09 08:10:10
Codeforces E. Bash Plays with Functions(积性函数DP)

链接

codeforces

题解

结论:\(f_0(n)=2^{n的质因子个数}\)=

根据性质可知\(f_0()\)是一个积性函数

对于\(f_{r+1}()\)化一下式子

对于

\[f_{r+1} = \sum_{d|n}f_r(d)
\]

\(f_r+1\)可以看做\(f_r()\)和\(g(d)\)的狄利克雷卷积因为\(f_0()\)是积性函数,\(g(d)\)也是积性函数,由卷积性质得\(f_{r+1}()\)也是积性函数,那么\(f_r\)同理

对于\(n\)质因数分解得到:

\[n=p_1^{e_1}*p_2^{e_2}* \cdots *p_k^{e_k}
\]

那么:

\[f_r(n)=f_r(p_1^{e_1})*f_r(p_2^{e_2})* \cdots *f_r(p_k^{e_k})
\]

对于\(p_i^{e_i}\)的所有因子个数为\(p^{ \{0,1,2,\cdots e_i \} }\)

可以看出,质因子的因字数时与\(p\)无关的

然后就可以dp预处理出,在\(f_i\)中i中的\(e\)次方的函数值

用f[i][j]表示\(f_i(p^j)\)那么f[i][j]=\(\sum_{k=0}^{j} dp[i-1][k]\)

代码

#include<cstdio>
#include<cmath>
#include<iostream> int Q; const int maxn = 10001;
const int mod = 1e9+7;
inline int read() {
int x=0;char c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0')x=x*10+c-'0',c=getchar();
return x;
} int prime[maxn],num=0;
bool vis[maxn];
int f[maxn*100][22];
void init() {
for(int i=2;i<=maxn;++i) {
if(!vis[i]) prime[++num]=i;
for(int j=1;j<=num&&i*prime[j]<maxn;++j) {
vis[i*prime[j]]=1;
if(!(i%prime[j]))break;
}
}
for(int i=1;i<=20;++i) f[0][i]=2;f[0][0]=1;
for(int sum=0,i=1;i<=maxn*100;++i) {
for(int j=0;j<=20;++j) {
sum+=f[i-1][j];sum%=mod;
f[i][j]+=sum;f[i][j]%=mod;
}
sum=0;
}
}
int solve(int a,int b) {
int ans=1;int st=sqrt(b)+0.5;
for(int cnt=0,i=1;i<=num&&prime[i]<=st;++i) {
cnt=0;
while(!(b%prime[i]))cnt++,b/=prime[i];
ans=(1LL*ans*f[a][cnt])%mod;
}
if(b>1)ans=(1LL*ans*f[a][1])%mod;
printf("%d\n",ans);
}
int main() {
init();
Q=read();
for(int a,b;Q--;) {
a=read();b=read();
solve(a,b);
}
return 0;
}