Xilinx FFT IP v9.0 使用

时间:2023-03-09 16:43:10
Xilinx FFT IP v9.0 使用

该ip用于实现N=2**m(m=3~16)点FFT的变换,

实现的数学类型包含:

A)      定点全精度

B)      定点缩减位宽

C)      块浮点

每一级蝶型运算后舍入或者取整。对于N点运算。FFT还是逆FFT,scaling策略以及循环前缀的长度是执行时可配置的,可随帧改变,改变变换点数会复位FFT ip核。

有四种可选择的FFT的实现架构:

1)  PipelinedStreaming I/O

2)  Radix-4Burst I/O

3)  Radix-2Burst I/O

4) Radix-2 Lite Burst I/O

FFTip核使用基二和基四分解法计算离散傅里叶变换,对于Burst I/O architectures採用时域抽取法实现,对于Pipelined Streaming I/Oarchitecture.使用频域抽取法。当使用基四计算时。其蝶型算法的级数是log 4 (N)。每一级包含N/4的基四蝶型运算。对于点数不是4的指数情况,则须要一个额外的基二来组合数据。

类似的基二实现法须要log 2 (N)级蝶型运算。对于scaling方法。其每一级的scaling因子由s_axis_config_tdata来配置。

Ip核的port例如以下:

Xilinx FFT IP v9.0 使用

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

输入输出方向在上图中已经非常明显了,以下描写叙述port作用

Aclk输入时钟。上升沿有效

Aclken :使用有效信号,高使能

Aresetn:同步复位信号,低电平有效(至少保持aclk两个时钟周期)

s_axis_config_tdata:包含配置信息,CP_LEN, FWD/INV, NFFT,SCALE_SCH.

上面信号全部s開始的表示的是axi信号的slave端,m是master端。

各信号作用參考《Fast Fourier Transform v9.0 LogiCORE IP Product Guide》

以8点FFT示意,configureXilinx FFT IP v9.0 使用

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

implementtation

Xilinx FFT IP v9.0 使用

summary

Xilinx FFT IP v9.0 使用

因为xilinx自带的testbench是VHDL的。这里给出自己写的verilog版本号的testbench。

`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer: shichaog
//
// Create Date: 04/13/2016 08:35:42 PM
// Design Name:
// Module Name: TB_fft256
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module TB_fft256;
// Inputs
reg aclk;
reg s_axis_config_tvalid;
reg s_axis_data_tvalid;
reg s_axis_data_tlast;
reg m_axis_data_tready;
reg [15:0] s_axis_config_tdata;
reg [95: 0] s_axis_data_tdata; // Outputs
wire s_axis_config_tready;
wire s_axis_data_tready;
wire m_axis_data_tvalid;
wire m_axis_data_tlast;
wire event_frame_started;
wire event_tlast_unexpected;
wire event_tlast_missing;
wire event_status_channel_halt;
wire event_data_in_channel_halt;
wire event_data_out_channel_halt;
wire [95 : 0] m_axis_data_tdata; reg[23:0] mem0_re[0:7];
reg[23:0] mem1_re[0:7];
reg[23:0] mem2_re[0:7];
initial $readmemh("/home/gsc/FPGA_exercise/bf_verilog/stimulus0_24bit.dat",mem0_re);
initial $readmemh("/home/gsc/FPGA_exercise/bf_verilog/stimulus1_24bit.dat",mem1_re);
initial $readmemh("/home/gsc/FPGA_exercise/bf_verilog/stimulus2_24bit.dat",mem2_re); reg[7:0] op_sample= 0;
reg op_sample_first = 1;
reg[7:0] ip_frame=0;
reg[7:0] op_frame=0; integer i; // generate clk
always #5 aclk =! aclk; // Instantiate the Unit Under Test (UUT)
xfft_256 uut (
.aclk(aclk), // input wire aclk
.s_axis_config_tdata(s_axis_config_tdata), // input wire [15 : 0] s_axis_config_tdata
.s_axis_config_tvalid(s_axis_config_tvalid), // input wire s_axis_config_tvalid
.s_axis_config_tready(s_axis_config_tready), // output wire s_axis_config_tready
.s_axis_data_tdata(s_axis_data_tdata), // input wire [95 : 0] s_axis_data_tdata
.s_axis_data_tvalid(s_axis_data_tvalid), // input wire s_axis_data_tvalid
.s_axis_data_tready(s_axis_data_tready), // output wire s_axis_data_tready
.s_axis_data_tlast(s_axis_data_tlast), // input wire s_axis_data_tlast
.m_axis_data_tdata(m_axis_data_tdata), // output wire [95 : 0] m_axis_data_tdata
.m_axis_data_tvalid(m_axis_data_tvalid), // output wire m_axis_data_tvalid
.m_axis_data_tready(m_axis_data_tready), // input wire m_axis_data_tready
.m_axis_data_tlast(m_axis_data_tlast), // output wire m_axis_data_tlast
.event_frame_started(event_frame_started), // output wire event_frame_started
.event_tlast_unexpected(event_tlast_unexpected), // output wire event_tlast_unexpected
.event_tlast_missing(event_tlast_missing), // output wire event_tlast_missing
.event_status_channel_halt(event_status_channel_halt), // output wire event_status_channel_halt
.event_data_in_channel_halt(event_data_in_channel_halt), // output wire event_data_in_channel_halt
.event_data_out_channel_halt(event_data_out_channel_halt) // output wire event_data_out_channel_halt
); initial begin
// Initialize Inputs
aclk = 0;
s_axis_config_tvalid = 0;
s_axis_config_tdata = 0;
s_axis_data_tvalid = 0;
s_axis_data_tdata = 0;
s_axis_data_tlast = 0;
m_axis_data_tready = 0; // Wait 100 ns for global reset to finish
#150;
m_axis_data_tready = 1;
s_axis_config_tvalid = 1;
//s_axis_config_tdata = 16'b0101100101011011; // FFT desired (and not IFFT
s_axis_config_tdata = 16'b0000000000000111; // FFT desired (and not IFFT //s_axis_data_tlast = 1;
s_axis_data_tdata = 96'h000000;
s_axis_data_tvalid = 0; begin
for(i=0;i<8;i=i+1)
begin
#10
s_axis_data_tvalid <= 1;
s_axis_data_tdata <= {{24'h000000},mem1_re[i],{24'h000000},mem0_re[i]};
$display("mem_a[%d] = %h", i, mem0_re[i]);
// if(i== 256)
// s_axis_data_tlast <= 1;
// else
// s_axis_data_tlast <= 0;
end end
#10;
s_axis_data_tdata = 96'h000000;
s_axis_data_tvalid = 0;
#1000 $finish;
//$stop end
endmodule

stimulus0_24bit.dat文件内容例如以下:

000000
000001
000002
000003
000004
000005
000006
000007

stimulus1_24bit.dat文件内容随便。这里是两个通道的FFT计算。

仿真波形图例如以下:

Xilinx FFT IP v9.0 使用

MATLAB计算所得的FFT结果例如以下:

Xilinx FFT IP v9.0 使用

将FFT结果的放大后得到例如以下图:

Xilinx FFT IP v9.0 使用

MATLAB计算的结果是28。而fpga仿真结果是00000e,-4则是fffffe。这是由于设置了scaling因子,且scaling因子是2,即28/2=14。

关于hls的实现见:

http://blog.****.net/shichaog/article/details/50811449