弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径

时间:2022-08-04 06:49:45
#include <iostream>
#include <string>
#include <iomanip>
using namespace std; #define INFINITY 65535
#define MAX_VERTEX_NUM 10 typedef struct MGraph{
string vexs[10];//顶点信息
int arcs[10][10];//邻接矩阵
int vexnum, arcnum;//顶点数和边数
}MGraph; int LocateVex(MGraph G, string u)//返回顶点u在图中的位置
{
for(int i=0; i<G.vexnum; i++)
if(G.vexs[i]==u)
return i;
return -1;
} void CreateDN(MGraph &G)//构造有向图
{
string v1, v2;
int w;
int i, j, k;
cout<<"请输入顶点数和边数:";
cin>>G.vexnum>>G.arcnum; cout<<"请输入顶点:";
for(i=0; i<G.vexnum; i++)
cin>>G.vexs[i]; for(i=0; i<G.vexnum; i++)
for(j=0; j<G.vexnum; j++)
G.arcs[i][j]=INFINITY; cout<<"请输入边和权值:"<<endl;
for(k=0; k<G.arcnum; k++)
{
cin>>v1>>v2>>w;
i=LocateVex(G, v1);
j=LocateVex(G, v2);
G.arcs[i][j]=w;
}
} //弗洛伊德算法求每一对顶点间的最短路径
//p[v][w][i]表示当前求得的顶点v到顶点w的最短路径中的第i+1个顶点,这是打印最短路径的关键
//D[v][w]表示当前求得的顶点v到顶点w的最短路径的长度
void ShortestPath_FLOYD(MGraph G, int p[MAX_VERTEX_NUM][MAX_VERTEX_NUM][MAX_VERTEX_NUM], int D[][MAX_VERTEX_NUM])
{
int u, v, w, i, j; for(v=0; v<G.vexnum; v++)
for(w=0; w<G.vexnum; w++)
{
D[v][w]=G.arcs[v][w];
for(u=0; u<G.vexnum; u++)
p[v][w][u]=-1;
if(D[v][w] < INFINITY)
{
p[v][w][0]=v;
p[v][w][1]=w;
}
} for(u=0; u<G.vexnum; u++)
for(v=0; v<G.vexnum; v++)
for(w=0; w<G.vexnum; w++)
if(D[v][u] < INFINITY && D[u][w] < INFINITY && D[v][u]+D[u][w] < D[v][w])
{
//更新D
D[v][w]=D[v][u]+D[u][w];
//更新p,从v到w的路径是从v到u,再从u到w的所有路径
for(i=0; i<G.vexnum; i++)
{
if(p[v][u][i]!=-1)
p[v][w][i]=p[v][u][i];
else
break;
}
for(j=1; j<G.vexnum; j++)//注意:这里j从1开始而不是从0开始,因为从v到u的路径最后一个顶点是u, 而从u到w的路径第一个顶点是u,只需打印u一次即可。
{
if(p[u][w][j]!=-1)
p[v][w][i++]=p[u][w][j];
else
break;
} } } void main()
{
MGraph g;
int p[MAX_VERTEX_NUM][MAX_VERTEX_NUM][MAX_VERTEX_NUM];
int D[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; CreateDN(g);
for(int i=0; i<g.vexnum; i++)
g.arcs[i][i]=0;
ShortestPath_FLOYD(g, p, D); cout<<"d矩阵(最短路径长度矩阵):"<<endl;
for(i=0; i<g.vexnum; i++)
{
for(int j=0; j<g.vexnum; j++)
cout<<setw(5)<<D[i][j]<<" ";
cout<<endl;
} cout<<endl;
cout<<"各顶点间最短长度及路径如下:"<<endl;
for(i=0; i<g.vexnum; i++)
{
for(int j=0; j<g.vexnum; j++)
{
if(i!=j)
{
if(D[i][j]!=INFINITY)
{
cout<<g.vexs[i]<<"到"<<g.vexs[j]<<"的最短长度为:"<<setw(5)<<D[i][j]<<", 最短路径为:";
for(int k=0; k<g.vexnum; k++)
{
if(p[i][j][k]!=-1)
cout<<g.vexs[p[i][j][k]]<<" ";
else
break;
}
cout<<endl;
}
else
cout<<g.vexs[i]<<"到"<<g.vexs[j]<<"不可达"<<endl;
} }
cout<<endl; } }

测试一:

弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径

弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径

测试二:

弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径

弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径