java.lang.Long 类源码解读

时间:2023-03-09 17:09:46
java.lang.Long 类源码解读
  • 总体阅读了Long的源码,基本跟Integer类类似,所以特别全部贴出源码,直接注释进行理解。
     // final修饰符
    public final class Long extends Number implements Comparable<Long> {
    /**
    * A constant holding the minimum value a {@code long} can
    * have, -2<sup>63</sup>.
    */
    // 最小值-负值
    @Native public static final long MIN_VALUE = 0x8000000000000000L; /**
    * A constant holding the maximum value a {@code long} can
    * have, 2<sup>63</sup>-1.
    */
    // 最大值-有符号
    @Native public static final long MAX_VALUE = 0x7fffffffffffffffL; /**
    * The {@code Class} instance representing the primitive type
    * {@code long}.
    *
    * @since JDK1.1
    */
    @SuppressWarnings("unchecked")
    // class
    public static final Class<Long> TYPE = (Class<Long>) Class.getPrimitiveClass("long"); /**
    * Returns a string representation of the first argument in the
    * radix specified by the second argument.
    *
    * <p>If the radix is smaller than {@code Character.MIN_RADIX}
    * or larger than {@code Character.MAX_RADIX}, then the radix
    * {@code 10} is used instead.
    *
    * <p>If the first argument is negative, the first element of the
    * result is the ASCII minus sign {@code '-'}
    * ({@code '\u005Cu002d'}). If the first argument is not
    * negative, no sign character appears in the result.
    *
    * <p>The remaining characters of the result represent the magnitude
    * of the first argument. If the magnitude is zero, it is
    * represented by a single zero character {@code '0'}
    * ({@code '\u005Cu0030'}); otherwise, the first character of
    * the representation of the magnitude will not be the zero
    * character. The following ASCII characters are used as digits:
    *
    * <blockquote>
    * {@code 0123456789abcdefghijklmnopqrstuvwxyz}
    * </blockquote>
    *
    * These are {@code '\u005Cu0030'} through
    * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
    * {@code '\u005Cu007a'}. If {@code radix} is
    * <var>N</var>, then the first <var>N</var> of these characters
    * are used as radix-<var>N</var> digits in the order shown. Thus,
    * the digits for hexadecimal (radix 16) are
    * {@code 0123456789abcdef}. If uppercase letters are
    * desired, the {@link java.lang.String#toUpperCase()} method may
    * be called on the result:
    *
    * <blockquote>
    * {@code Long.toString(n, 16).toUpperCase()}
    * </blockquote>
    *
    * @param i a {@code long} to be converted to a string.
    * @param radix the radix to use in the string representation.
    * @return a string representation of the argument in the specified radix.
    * @see java.lang.Character#MAX_RADIX
    * @see java.lang.Character#MIN_RADIX
    */
    // radix 基数
    public static String toString(long i, int radix) {
    if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
    radix = 10;
    if (radix == 10)
    return toString(i);
    char[] buf = new char[65];
    int charPos = 64;
    boolean negative = (i < 0); if (!negative) {
    i = -i;
    } while (i <= -radix) {
    buf[charPos--] = Integer.digits[(int)(-(i % radix))];
    i = i / radix;
    }
    buf[charPos] = Integer.digits[(int)(-i)]; if (negative) {
    buf[--charPos] = '-';
    } return new String(buf, charPos, (65 - charPos));
    } /**
    * Returns a string representation of the first argument as an
    * unsigned integer value in the radix specified by the second
    * argument.
    *
    * <p>If the radix is smaller than {@code Character.MIN_RADIX}
    * or larger than {@code Character.MAX_RADIX}, then the radix
    * {@code 10} is used instead.
    *
    * <p>Note that since the first argument is treated as an unsigned
    * value, no leading sign character is printed.
    *
    * <p>If the magnitude is zero, it is represented by a single zero
    * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
    * the first character of the representation of the magnitude will
    * not be the zero character.
    *
    * <p>The behavior of radixes and the characters used as digits
    * are the same as {@link #toString(long, int) toString}.
    *
    * @param i an integer to be converted to an unsigned string.
    * @param radix the radix to use in the string representation.
    * @return an unsigned string representation of the argument in the specified radix.
    * @see #toString(long, int)
    * @since 1.8
    */
    public static String toUnsignedString(long i, int radix) {
    if (i >= 0)
    return toString(i, radix);
    else {
    switch (radix) {
    case 2:
    return toBinaryString(i); case 4:
    return toUnsignedString0(i, 2); case 8:
    return toOctalString(i); case 10:
    /*
    * We can get the effect of an unsigned division by 10
    * on a long value by first shifting right, yielding a
    * positive value, and then dividing by 5. This
    * allows the last digit and preceding digits to be
    * isolated more quickly than by an initial conversion
    * to BigInteger.
    */
    long quot = (i >>> 1) / 5;
    long rem = i - quot * 10;
    return toString(quot) + rem; case 16:
    return toHexString(i); case 32:
    return toUnsignedString0(i, 5); default:
    return toUnsignedBigInteger(i).toString(radix);
    }
    }
    } /**
    * Return a BigInteger equal to the unsigned value of the
    * argument.
    */
    private static BigInteger toUnsignedBigInteger(long i) {
    if (i >= 0L)
    return BigInteger.valueOf(i);
    else {
    int upper = (int) (i >>> 32);
    int lower = (int) i; // return (upper << 32) + lower
    return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
    add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
    }
    } /**
    * Returns a string representation of the {@code long}
    * argument as an unsigned integer in base&nbsp;16.
    *
    * <p>The unsigned {@code long} value is the argument plus
    * 2<sup>64</sup> if the argument is negative; otherwise, it is
    * equal to the argument. This value is converted to a string of
    * ASCII digits in hexadecimal (base&nbsp;16) with no extra
    * leading {@code 0}s.
    *
    * <p>The value of the argument can be recovered from the returned
    * string {@code s} by calling {@link
    * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
    * 16)}.
    *
    * <p>If the unsigned magnitude is zero, it is represented by a
    * single zero character {@code '0'} ({@code '\u005Cu0030'});
    * otherwise, the first character of the representation of the
    * unsigned magnitude will not be the zero character. The
    * following characters are used as hexadecimal digits:
    *
    * <blockquote>
    * {@code 0123456789abcdef}
    * </blockquote>
    *
    * These are the characters {@code '\u005Cu0030'} through
    * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
    * {@code '\u005Cu0066'}. If uppercase letters are desired,
    * the {@link java.lang.String#toUpperCase()} method may be called
    * on the result:
    *
    * <blockquote>
    * {@code Long.toHexString(n).toUpperCase()}
    * </blockquote>
    *
    * @param i a {@code long} to be converted to a string.
    * @return the string representation of the unsigned {@code long}
    * value represented by the argument in hexadecimal
    * (base&nbsp;16).
    * @see #parseUnsignedLong(String, int)
    * @see #toUnsignedString(long, int)
    * @since JDK 1.0.2
    */
    public static String toHexString(long i) {
    return toUnsignedString0(i, 4);
    } /**
    * Returns a string representation of the {@code long}
    * argument as an unsigned integer in base&nbsp;8.
    *
    * <p>The unsigned {@code long} value is the argument plus
    * 2<sup>64</sup> if the argument is negative; otherwise, it is
    * equal to the argument. This value is converted to a string of
    * ASCII digits in octal (base&nbsp;8) with no extra leading
    * {@code 0}s.
    *
    * <p>The value of the argument can be recovered from the returned
    * string {@code s} by calling {@link
    * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
    * 8)}.
    *
    * <p>If the unsigned magnitude is zero, it is represented by a
    * single zero character {@code '0'} ({@code '\u005Cu0030'});
    * otherwise, the first character of the representation of the
    * unsigned magnitude will not be the zero character. The
    * following characters are used as octal digits:
    *
    * <blockquote>
    * {@code 01234567}
    * </blockquote>
    *
    * These are the characters {@code '\u005Cu0030'} through
    * {@code '\u005Cu0037'}.
    *
    * @param i a {@code long} to be converted to a string.
    * @return the string representation of the unsigned {@code long}
    * value represented by the argument in octal (base&nbsp;8).
    * @see #parseUnsignedLong(String, int)
    * @see #toUnsignedString(long, int)
    * @since JDK 1.0.2
    */
    public static String toOctalString(long i) {
    return toUnsignedString0(i, 3);
    } /**
    * Returns a string representation of the {@code long}
    * argument as an unsigned integer in base&nbsp;2.
    *
    * <p>The unsigned {@code long} value is the argument plus
    * 2<sup>64</sup> if the argument is negative; otherwise, it is
    * equal to the argument. This value is converted to a string of
    * ASCII digits in binary (base&nbsp;2) with no extra leading
    * {@code 0}s.
    *
    * <p>The value of the argument can be recovered from the returned
    * string {@code s} by calling {@link
    * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
    * 2)}.
    *
    * <p>If the unsigned magnitude is zero, it is represented by a
    * single zero character {@code '0'} ({@code '\u005Cu0030'});
    * otherwise, the first character of the representation of the
    * unsigned magnitude will not be the zero character. The
    * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
    * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
    *
    * @param i a {@code long} to be converted to a string.
    * @return the string representation of the unsigned {@code long}
    * value represented by the argument in binary (base&nbsp;2).
    * @see #parseUnsignedLong(String, int)
    * @see #toUnsignedString(long, int)
    * @since JDK 1.0.2
    */
    public static String toBinaryString(long i) {
    return toUnsignedString0(i, 1);
    } /**
    * Format a long (treated as unsigned) into a String.
    * @param val the value to format
    * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
    */
    static String toUnsignedString0(long val, int shift) {
    // assert shift > 0 && shift <=5 : "Illegal shift value";
    int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
    int chars = Math.max(((mag + (shift - 1)) / shift), 1);
    char[] buf = new char[chars]; formatUnsignedLong(val, shift, buf, 0, chars);
    return new String(buf, true);
    } /**
    * Format a long (treated as unsigned) into a character buffer.
    * @param val the unsigned long to format
    * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
    * @param buf the character buffer to write to
    * @param offset the offset in the destination buffer to start at
    * @param len the number of characters to write
    * @return the lowest character location used
    */
    static int formatUnsignedLong(long val, int shift, char[] buf, int offset, int len) {
    int charPos = len;
    int radix = 1 << shift;
    int mask = radix - 1;
    do {
    buf[offset + --charPos] = Integer.digits[((int) val) & mask];
    val >>>= shift;
    } while (val != 0 && charPos > 0); return charPos;
    } /**
    * Returns a {@code String} object representing the specified
    * {@code long}. The argument is converted to signed decimal
    * representation and returned as a string, exactly as if the
    * argument and the radix 10 were given as arguments to the {@link
    * #toString(long, int)} method.
    *
    * @param i a {@code long} to be converted.
    * @return a string representation of the argument in base&nbsp;10.
    */
    public static String toString(long i) {
    if (i == Long.MIN_VALUE)
    return "-9223372036854775808";
    int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
    char[] buf = new char[size];
    getChars(i, size, buf);
    return new String(buf, true);
    } /**
    * Returns a string representation of the argument as an unsigned
    * decimal value.
    *
    * The argument is converted to unsigned decimal representation
    * and returned as a string exactly as if the argument and radix
    * 10 were given as arguments to the {@link #toUnsignedString(long,
    * int)} method.
    *
    * @param i an integer to be converted to an unsigned string.
    * @return an unsigned string representation of the argument.
    * @see #toUnsignedString(long, int)
    * @since 1.8
    */
    public static String toUnsignedString(long i) {
    return toUnsignedString(i, 10);
    } /**
    * Places characters representing the integer i into the
    * character array buf. The characters are placed into
    * the buffer backwards starting with the least significant
    * digit at the specified index (exclusive), and working
    * backwards from there.
    *
    * Will fail if i == Long.MIN_VALUE
    */
    static void getChars(long i, int index, char[] buf) {
    long q;
    int r;
    int charPos = index;
    char sign = 0; if (i < 0) {
    sign = '-';
    i = -i;
    } // Get 2 digits/iteration using longs until quotient fits into an int
    while (i > Integer.MAX_VALUE) {
    q = i / 100;
    // really: r = i - (q * 100);
    r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
    i = q;
    buf[--charPos] = Integer.DigitOnes[r];
    buf[--charPos] = Integer.DigitTens[r];
    } // Get 2 digits/iteration using ints
    int q2;
    int i2 = (int)i;
    while (i2 >= 65536) {
    q2 = i2 / 100;
    // really: r = i2 - (q * 100);
    r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
    i2 = q2;
    buf[--charPos] = Integer.DigitOnes[r];
    buf[--charPos] = Integer.DigitTens[r];
    } // Fall thru to fast mode for smaller numbers
    // assert(i2 <= 65536, i2);
    for (;;) {
    q2 = (i2 * 52429) >>> (16+3);
    r = i2 - ((q2 << 3) + (q2 << 1)); // r = i2-(q2*10) ...
    buf[--charPos] = Integer.digits[r];
    i2 = q2;
    if (i2 == 0) break;
    }
    if (sign != 0) {
    buf[--charPos] = sign;
    }
    } // Requires positive x
    static int stringSize(long x) {
    long p = 10;
    for (int i=1; i<19; i++) {
    if (x < p)
    return i;
    p = 10*p;
    }
    return 19;
    } /**
    * Parses the string argument as a signed {@code long} in the
    * radix specified by the second argument. The characters in the
    * string must all be digits of the specified radix (as determined
    * by whether {@link java.lang.Character#digit(char, int)} returns
    * a nonnegative value), except that the first character may be an
    * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
    * indicate a negative value or an ASCII plus sign {@code '+'}
    * ({@code '\u005Cu002B'}) to indicate a positive value. The
    * resulting {@code long} value is returned.
    *
    * <p>Note that neither the character {@code L}
    * ({@code '\u005Cu004C'}) nor {@code l}
    * ({@code '\u005Cu006C'}) is permitted to appear at the end
    * of the string as a type indicator, as would be permitted in
    * Java programming language source code - except that either
    * {@code L} or {@code l} may appear as a digit for a
    * radix greater than or equal to 22.
    *
    * <p>An exception of type {@code NumberFormatException} is
    * thrown if any of the following situations occurs:
    * <ul>
    *
    * <li>The first argument is {@code null} or is a string of
    * length zero.
    *
    * <li>The {@code radix} is either smaller than {@link
    * java.lang.Character#MIN_RADIX} or larger than {@link
    * java.lang.Character#MAX_RADIX}.
    *
    * <li>Any character of the string is not a digit of the specified
    * radix, except that the first character may be a minus sign
    * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
    * '+'} ({@code '\u005Cu002B'}) provided that the string is
    * longer than length 1.
    *
    * <li>The value represented by the string is not a value of type
    * {@code long}.
    * </ul>
    *
    * <p>Examples:
    * <blockquote><pre>
    * parseLong("0", 10) returns 0L
    * parseLong("473", 10) returns 473L
    * parseLong("+42", 10) returns 42L
    * parseLong("-0", 10) returns 0L
    * parseLong("-FF", 16) returns -255L
    * parseLong("1100110", 2) returns 102L
    * parseLong("99", 8) throws a NumberFormatException
    * parseLong("Hazelnut", 10) throws a NumberFormatException
    * parseLong("Hazelnut", 36) returns 1356099454469L
    * </pre></blockquote>
    *
    * @param s the {@code String} containing the
    * {@code long} representation to be parsed.
    * @param radix the radix to be used while parsing {@code s}.
    * @return the {@code long} represented by the string argument in
    * the specified radix.
    * @throws NumberFormatException if the string does not contain a
    * parsable {@code long}.
    */
    public static long parseLong(String s, int radix)
    throws NumberFormatException
    {
    if (s == null) {
    throw new NumberFormatException("null");
    } if (radix < Character.MIN_RADIX) {
    throw new NumberFormatException("radix " + radix +
    " less than Character.MIN_RADIX");
    }
    if (radix > Character.MAX_RADIX) {
    throw new NumberFormatException("radix " + radix +
    " greater than Character.MAX_RADIX");
    } long result = 0;
    boolean negative = false;
    int i = 0, len = s.length();
    long limit = -Long.MAX_VALUE;
    long multmin;
    int digit; if (len > 0) {
    char firstChar = s.charAt(0);
    if (firstChar < '0') { // Possible leading "+" or "-"
    if (firstChar == '-') {
    negative = true;
    limit = Long.MIN_VALUE;
    } else if (firstChar != '+')
    throw NumberFormatException.forInputString(s); if (len == 1) // Cannot have lone "+" or "-"
    throw NumberFormatException.forInputString(s);
    i++;
    }
    multmin = limit / radix;
    while (i < len) {
    // Accumulating negatively avoids surprises near MAX_VALUE
    digit = Character.digit(s.charAt(i++),radix);
    if (digit < 0) {
    throw NumberFormatException.forInputString(s);
    }
    if (result < multmin) {
    throw NumberFormatException.forInputString(s);
    }
    result *= radix;
    if (result < limit + digit) {
    throw NumberFormatException.forInputString(s);
    }
    result -= digit;
    }
    } else {
    throw NumberFormatException.forInputString(s);
    }
    return negative ? result : -result;
    } /**
    * Parses the string argument as a signed decimal {@code long}.
    * The characters in the string must all be decimal digits, except
    * that the first character may be an ASCII minus sign {@code '-'}
    * ({@code \u005Cu002D'}) to indicate a negative value or an
    * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
    * indicate a positive value. The resulting {@code long} value is
    * returned, exactly as if the argument and the radix {@code 10}
    * were given as arguments to the {@link
    * #parseLong(java.lang.String, int)} method.
    *
    * <p>Note that neither the character {@code L}
    * ({@code '\u005Cu004C'}) nor {@code l}
    * ({@code '\u005Cu006C'}) is permitted to appear at the end
    * of the string as a type indicator, as would be permitted in
    * Java programming language source code.
    *
    * @param s a {@code String} containing the {@code long}
    * representation to be parsed
    * @return the {@code long} represented by the argument in
    * decimal.
    * @throws NumberFormatException if the string does not contain a
    * parsable {@code long}.
    */
    public static long parseLong(String s) throws NumberFormatException {
    return parseLong(s, 10);
    } /**
    * Parses the string argument as an unsigned {@code long} in the
    * radix specified by the second argument. An unsigned integer
    * maps the values usually associated with negative numbers to
    * positive numbers larger than {@code MAX_VALUE}.
    *
    * The characters in the string must all be digits of the
    * specified radix (as determined by whether {@link
    * java.lang.Character#digit(char, int)} returns a nonnegative
    * value), except that the first character may be an ASCII plus
    * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
    * integer value is returned.
    *
    * <p>An exception of type {@code NumberFormatException} is
    * thrown if any of the following situations occurs:
    * <ul>
    * <li>The first argument is {@code null} or is a string of
    * length zero.
    *
    * <li>The radix is either smaller than
    * {@link java.lang.Character#MIN_RADIX} or
    * larger than {@link java.lang.Character#MAX_RADIX}.
    *
    * <li>Any character of the string is not a digit of the specified
    * radix, except that the first character may be a plus sign
    * {@code '+'} ({@code '\u005Cu002B'}) provided that the
    * string is longer than length 1.
    *
    * <li>The value represented by the string is larger than the
    * largest unsigned {@code long}, 2<sup>64</sup>-1.
    *
    * </ul>
    *
    *
    * @param s the {@code String} containing the unsigned integer
    * representation to be parsed
    * @param radix the radix to be used while parsing {@code s}.
    * @return the unsigned {@code long} represented by the string
    * argument in the specified radix.
    * @throws NumberFormatException if the {@code String}
    * does not contain a parsable {@code long}.
    * @since 1.8
    */
    public static long parseUnsignedLong(String s, int radix)
    throws NumberFormatException {
    if (s == null) {
    throw new NumberFormatException("null");
    } int len = s.length();
    if (len > 0) {
    char firstChar = s.charAt(0);
    if (firstChar == '-') {
    throw new
    NumberFormatException(String.format("Illegal leading minus sign " +
    "on unsigned string %s.", s));
    } else {
    if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
    (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
    return parseLong(s, radix);
    } // No need for range checks on len due to testing above.
    long first = parseLong(s.substring(0, len - 1), radix);
    int second = Character.digit(s.charAt(len - 1), radix);
    if (second < 0) {
    throw new NumberFormatException("Bad digit at end of " + s);
    }
    long result = first * radix + second;
    if (compareUnsigned(result, first) < 0) {
    /*
    * The maximum unsigned value, (2^64)-1, takes at
    * most one more digit to represent than the
    * maximum signed value, (2^63)-1. Therefore,
    * parsing (len - 1) digits will be appropriately
    * in-range of the signed parsing. In other
    * words, if parsing (len -1) digits overflows
    * signed parsing, parsing len digits will
    * certainly overflow unsigned parsing.
    *
    * The compareUnsigned check above catches
    * situations where an unsigned overflow occurs
    * incorporating the contribution of the final
    * digit.
    */
    throw new NumberFormatException(String.format("String value %s exceeds " +
    "range of unsigned long.", s));
    }
    return result;
    }
    } else {
    throw NumberFormatException.forInputString(s);
    }
    } /**
    * Parses the string argument as an unsigned decimal {@code long}. The
    * characters in the string must all be decimal digits, except
    * that the first character may be an an ASCII plus sign {@code
    * '+'} ({@code '\u005Cu002B'}). The resulting integer value
    * is returned, exactly as if the argument and the radix 10 were
    * given as arguments to the {@link
    * #parseUnsignedLong(java.lang.String, int)} method.
    *
    * @param s a {@code String} containing the unsigned {@code long}
    * representation to be parsed
    * @return the unsigned {@code long} value represented by the decimal string argument
    * @throws NumberFormatException if the string does not contain a
    * parsable unsigned integer.
    * @since 1.8
    */
    public static long parseUnsignedLong(String s) throws NumberFormatException {
    return parseUnsignedLong(s, 10);
    } /**
    * Returns a {@code Long} object holding the value
    * extracted from the specified {@code String} when parsed
    * with the radix given by the second argument. The first
    * argument is interpreted as representing a signed
    * {@code long} in the radix specified by the second
    * argument, exactly as if the arguments were given to the {@link
    * #parseLong(java.lang.String, int)} method. The result is a
    * {@code Long} object that represents the {@code long}
    * value specified by the string.
    *
    * <p>In other words, this method returns a {@code Long} object equal
    * to the value of:
    *
    * <blockquote>
    * {@code new Long(Long.parseLong(s, radix))}
    * </blockquote>
    *
    * @param s the string to be parsed
    * @param radix the radix to be used in interpreting {@code s}
    * @return a {@code Long} object holding the value
    * represented by the string argument in the specified
    * radix.
    * @throws NumberFormatException If the {@code String} does not
    * contain a parsable {@code long}.
    */
    public static Long valueOf(String s, int radix) throws NumberFormatException {
    return Long.valueOf(parseLong(s, radix));
    } /**
    * Returns a {@code Long} object holding the value
    * of the specified {@code String}. The argument is
    * interpreted as representing a signed decimal {@code long},
    * exactly as if the argument were given to the {@link
    * #parseLong(java.lang.String)} method. The result is a
    * {@code Long} object that represents the integer value
    * specified by the string.
    *
    * <p>In other words, this method returns a {@code Long} object
    * equal to the value of:
    *
    * <blockquote>
    * {@code new Long(Long.parseLong(s))}
    * </blockquote>
    *
    * @param s the string to be parsed.
    * @return a {@code Long} object holding the value
    * represented by the string argument.
    * @throws NumberFormatException If the string cannot be parsed
    * as a {@code long}.
    */
    public static Long valueOf(String s) throws NumberFormatException
    {
    return Long.valueOf(parseLong(s, 10));
    } private static class LongCache {
    private LongCache(){} static final Long cache[] = new Long[-(-128) + 127 + 1]; static {
    for(int i = 0; i < cache.length; i++)
    cache[i] = new Long(i - 128);
    }
    } /**
    * Returns a {@code Long} instance representing the specified
    * {@code long} value.
    * If a new {@code Long} instance is not required, this method
    * should generally be used in preference to the constructor
    * {@link #Long(long)}, as this method is likely to yield
    * significantly better space and time performance by caching
    * frequently requested values.
    *
    * Note that unlike the {@linkplain Integer#valueOf(int)
    * corresponding method} in the {@code Integer} class, this method
    * is <em>not</em> required to cache values within a particular
    * range.
    *
    * @param l a long value.
    * @return a {@code Long} instance representing {@code l}.
    * @since 1.5
    */
    public static Long valueOf(long l) {
    final int offset = 128;
    if (l >= -128 && l <= 127) { // will cache
    return LongCache.cache[(int)l + offset];
    }
    return new Long(l);
    } /**
    * Decodes a {@code String} into a {@code Long}.
    * Accepts decimal, hexadecimal, and octal numbers given by the
    * following grammar:
    *
    * <blockquote>
    * <dl>
    * <dt><i>DecodableString:</i>
    * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
    * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
    * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
    * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
    * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
    *
    * <dt><i>Sign:</i>
    * <dd>{@code -}
    * <dd>{@code +}
    * </dl>
    * </blockquote>
    *
    * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
    * are as defined in section 3.10.1 of
    * <cite>The Java&trade; Language Specification</cite>,
    * except that underscores are not accepted between digits.
    *
    * <p>The sequence of characters following an optional
    * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
    * "{@code #}", or leading zero) is parsed as by the {@code
    * Long.parseLong} method with the indicated radix (10, 16, or 8).
    * This sequence of characters must represent a positive value or
    * a {@link NumberFormatException} will be thrown. The result is
    * negated if first character of the specified {@code String} is
    * the minus sign. No whitespace characters are permitted in the
    * {@code String}.
    *
    * @param nm the {@code String} to decode.
    * @return a {@code Long} object holding the {@code long}
    * value represented by {@code nm}
    * @throws NumberFormatException if the {@code String} does not
    * contain a parsable {@code long}.
    * @see java.lang.Long#parseLong(String, int)
    * @since 1.2
    */
    public static Long decode(String nm) throws NumberFormatException {
    int radix = 10;
    int index = 0;
    boolean negative = false;
    Long result; if (nm.length() == 0)
    throw new NumberFormatException("Zero length string");
    char firstChar = nm.charAt(0);
    // Handle sign, if present
    if (firstChar == '-') {
    negative = true;
    index++;
    } else if (firstChar == '+')
    index++; // Handle radix specifier, if present
    if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
    index += 2;
    radix = 16;
    }
    else if (nm.startsWith("#", index)) {
    index ++;
    radix = 16;
    }
    else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
    index ++;
    radix = 8;
    } if (nm.startsWith("-", index) || nm.startsWith("+", index))
    throw new NumberFormatException("Sign character in wrong position"); try {
    result = Long.valueOf(nm.substring(index), radix);
    result = negative ? Long.valueOf(-result.longValue()) : result;
    } catch (NumberFormatException e) {
    // If number is Long.MIN_VALUE, we'll end up here. The next line
    // handles this case, and causes any genuine format error to be
    // rethrown.
    String constant = negative ? ("-" + nm.substring(index))
    : nm.substring(index);
    result = Long.valueOf(constant, radix);
    }
    return result;
    } /**
    * The value of the {@code Long}.
    *
    * @serial
    */
    private final long value; /**
    * Constructs a newly allocated {@code Long} object that
    * represents the specified {@code long} argument.
    *
    * @param value the value to be represented by the
    * {@code Long} object.
    */
    public Long(long value) {
    this.value = value;
    } /**
    * Constructs a newly allocated {@code Long} object that
    * represents the {@code long} value indicated by the
    * {@code String} parameter. The string is converted to a
    * {@code long} value in exactly the manner used by the
    * {@code parseLong} method for radix 10.
    *
    * @param s the {@code String} to be converted to a
    * {@code Long}.
    * @throws NumberFormatException if the {@code String} does not
    * contain a parsable {@code long}.
    * @see java.lang.Long#parseLong(java.lang.String, int)
    */
    public Long(String s) throws NumberFormatException {
    this.value = parseLong(s, 10);
    } /**
    * Returns the value of this {@code Long} as a {@code byte} after
    * a narrowing primitive conversion.
    * @jls 5.1.3 Narrowing Primitive Conversions
    */
    public byte byteValue() {
    return (byte)value;
    } /**
    * Returns the value of this {@code Long} as a {@code short} after
    * a narrowing primitive conversion.
    * @jls 5.1.3 Narrowing Primitive Conversions
    */
    public short shortValue() {
    return (short)value;
    } /**
    * Returns the value of this {@code Long} as an {@code int} after
    * a narrowing primitive conversion.
    * @jls 5.1.3 Narrowing Primitive Conversions
    */
    public int intValue() {
    return (int)value;
    } /**
    * Returns the value of this {@code Long} as a
    * {@code long} value.
    */
    public long longValue() {
    return value;
    } /**
    * Returns the value of this {@code Long} as a {@code float} after
    * a widening primitive conversion.
    * @jls 5.1.2 Widening Primitive Conversions
    */
    public float floatValue() {
    return (float)value;
    } /**
    * Returns the value of this {@code Long} as a {@code double}
    * after a widening primitive conversion.
    * @jls 5.1.2 Widening Primitive Conversions
    */
    public double doubleValue() {
    return (double)value;
    } /**
    * Returns a {@code String} object representing this
    * {@code Long}'s value. The value is converted to signed
    * decimal representation and returned as a string, exactly as if
    * the {@code long} value were given as an argument to the
    * {@link java.lang.Long#toString(long)} method.
    *
    * @return a string representation of the value of this object in
    * base&nbsp;10.
    */
    public String toString() {
    return toString(value);
    } /**
    * Returns a hash code for this {@code Long}. The result is
    * the exclusive OR of the two halves of the primitive
    * {@code long} value held by this {@code Long}
    * object. That is, the hashcode is the value of the expression:
    *
    * <blockquote>
    * {@code (int)(this.longValue()^(this.longValue()>>>32))}
    * </blockquote>
    *
    * @return a hash code value for this object.
    */
    @Override
    public int hashCode() {
    return Long.hashCode(value);
    } /**
    * Returns a hash code for a {@code long} value; compatible with
    * {@code Long.hashCode()}.
    *
    * @param value the value to hash
    * @return a hash code value for a {@code long} value.
    * @since 1.8
    */
    public static int hashCode(long value) {
    return (int)(value ^ (value >>> 32));
    } /**
    * Compares this object to the specified object. The result is
    * {@code true} if and only if the argument is not
    * {@code null} and is a {@code Long} object that
    * contains the same {@code long} value as this object.
    *
    * @param obj the object to compare with.
    * @return {@code true} if the objects are the same;
    * {@code false} otherwise.
    */
    public boolean equals(Object obj) {
    if (obj instanceof Long) {
    return value == ((Long)obj).longValue();
    }
    return false;
    } /**
    * Determines the {@code long} value of the system property
    * with the specified name.
    *
    * <p>The first argument is treated as the name of a system
    * property. System properties are accessible through the {@link
    * java.lang.System#getProperty(java.lang.String)} method. The
    * string value of this property is then interpreted as a {@code
    * long} value using the grammar supported by {@link Long#decode decode}
    * and a {@code Long} object representing this value is returned.
    *
    * <p>If there is no property with the specified name, if the
    * specified name is empty or {@code null}, or if the property
    * does not have the correct numeric format, then {@code null} is
    * returned.
    *
    * <p>In other words, this method returns a {@code Long} object
    * equal to the value of:
    *
    * <blockquote>
    * {@code getLong(nm, null)}
    * </blockquote>
    *
    * @param nm property name.
    * @return the {@code Long} value of the property.
    * @throws SecurityException for the same reasons as
    * {@link System#getProperty(String) System.getProperty}
    * @see java.lang.System#getProperty(java.lang.String)
    * @see java.lang.System#getProperty(java.lang.String, java.lang.String)
    */
    public static Long getLong(String nm) {
    return getLong(nm, null);
    } /**
    * Determines the {@code long} value of the system property
    * with the specified name.
    *
    * <p>The first argument is treated as the name of a system
    * property. System properties are accessible through the {@link
    * java.lang.System#getProperty(java.lang.String)} method. The
    * string value of this property is then interpreted as a {@code
    * long} value using the grammar supported by {@link Long#decode decode}
    * and a {@code Long} object representing this value is returned.
    *
    * <p>The second argument is the default value. A {@code Long} object
    * that represents the value of the second argument is returned if there
    * is no property of the specified name, if the property does not have
    * the correct numeric format, or if the specified name is empty or null.
    *
    * <p>In other words, this method returns a {@code Long} object equal
    * to the value of:
    *
    * <blockquote>
    * {@code getLong(nm, new Long(val))}
    * </blockquote>
    *
    * but in practice it may be implemented in a manner such as:
    *
    * <blockquote><pre>
    * Long result = getLong(nm, null);
    * return (result == null) ? new Long(val) : result;
    * </pre></blockquote>
    *
    * to avoid the unnecessary allocation of a {@code Long} object when
    * the default value is not needed.
    *
    * @param nm property name.
    * @param val default value.
    * @return the {@code Long} value of the property.
    * @throws SecurityException for the same reasons as
    * {@link System#getProperty(String) System.getProperty}
    * @see java.lang.System#getProperty(java.lang.String)
    * @see java.lang.System#getProperty(java.lang.String, java.lang.String)
    */
    public static Long getLong(String nm, long val) {
    Long result = Long.getLong(nm, null);
    return (result == null) ? Long.valueOf(val) : result;
    } /**
    * Returns the {@code long} value of the system property with
    * the specified name. The first argument is treated as the name
    * of a system property. System properties are accessible through
    * the {@link java.lang.System#getProperty(java.lang.String)}
    * method. The string value of this property is then interpreted
    * as a {@code long} value, as per the
    * {@link Long#decode decode} method, and a {@code Long} object
    * representing this value is returned; in summary:
    *
    * <ul>
    * <li>If the property value begins with the two ASCII characters
    * {@code 0x} or the ASCII character {@code #}, not followed by
    * a minus sign, then the rest of it is parsed as a hexadecimal integer
    * exactly as for the method {@link #valueOf(java.lang.String, int)}
    * with radix 16.
    * <li>If the property value begins with the ASCII character
    * {@code 0} followed by another character, it is parsed as
    * an octal integer exactly as by the method {@link
    * #valueOf(java.lang.String, int)} with radix 8.
    * <li>Otherwise the property value is parsed as a decimal
    * integer exactly as by the method
    * {@link #valueOf(java.lang.String, int)} with radix 10.
    * </ul>
    *
    * <p>Note that, in every case, neither {@code L}
    * ({@code '\u005Cu004C'}) nor {@code l}
    * ({@code '\u005Cu006C'}) is permitted to appear at the end
    * of the property value as a type indicator, as would be
    * permitted in Java programming language source code.
    *
    * <p>The second argument is the default value. The default value is
    * returned if there is no property of the specified name, if the
    * property does not have the correct numeric format, or if the
    * specified name is empty or {@code null}.
    *
    * @param nm property name.
    * @param val default value.
    * @return the {@code Long} value of the property.
    * @throws SecurityException for the same reasons as
    * {@link System#getProperty(String) System.getProperty}
    * @see System#getProperty(java.lang.String)
    * @see System#getProperty(java.lang.String, java.lang.String)
    */
    public static Long getLong(String nm, Long val) {
    String v = null;
    try {
    v = System.getProperty(nm);
    } catch (IllegalArgumentException | NullPointerException e) {
    }
    if (v != null) {
    try {
    return Long.decode(v);
    } catch (NumberFormatException e) {
    }
    }
    return val;
    } /**
    * Compares two {@code Long} objects numerically.
    *
    * @param anotherLong the {@code Long} to be compared.
    * @return the value {@code 0} if this {@code Long} is
    * equal to the argument {@code Long}; a value less than
    * {@code 0} if this {@code Long} is numerically less
    * than the argument {@code Long}; and a value greater
    * than {@code 0} if this {@code Long} is numerically
    * greater than the argument {@code Long} (signed
    * comparison).
    * @since 1.2
    */
    public int compareTo(Long anotherLong) {
    return compare(this.value, anotherLong.value);
    } /**
    * Compares two {@code long} values numerically.
    * The value returned is identical to what would be returned by:
    * <pre>
    * Long.valueOf(x).compareTo(Long.valueOf(y))
    * </pre>
    *
    * @param x the first {@code long} to compare
    * @param y the second {@code long} to compare
    * @return the value {@code 0} if {@code x == y};
    * a value less than {@code 0} if {@code x < y}; and
    * a value greater than {@code 0} if {@code x > y}
    * @since 1.7
    */
    public static int compare(long x, long y) {
    return (x < y) ? -1 : ((x == y) ? 0 : 1);
    } /**
    * Compares two {@code long} values numerically treating the values
    * as unsigned.
    *
    * @param x the first {@code long} to compare
    * @param y the second {@code long} to compare
    * @return the value {@code 0} if {@code x == y}; a value less
    * than {@code 0} if {@code x < y} as unsigned values; and
    * a value greater than {@code 0} if {@code x > y} as
    * unsigned values
    * @since 1.8
    */
    public static int compareUnsigned(long x, long y) {
    return compare(x + MIN_VALUE, y + MIN_VALUE);
    } /**
    * Returns the unsigned quotient of dividing the first argument by
    * the second where each argument and the result is interpreted as
    * an unsigned value.
    *
    * <p>Note that in two's complement arithmetic, the three other
    * basic arithmetic operations of add, subtract, and multiply are
    * bit-wise identical if the two operands are regarded as both
    * being signed or both being unsigned. Therefore separate {@code
    * addUnsigned}, etc. methods are not provided.
    *
    * @param dividend the value to be divided
    * @param divisor the value doing the dividing
    * @return the unsigned quotient of the first argument divided by
    * the second argument
    * @see #remainderUnsigned
    * @since 1.8
    */
    public static long divideUnsigned(long dividend, long divisor) {
    if (divisor < 0L) { // signed comparison
    // Answer must be 0 or 1 depending on relative magnitude
    // of dividend and divisor.
    return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
    } if (dividend > 0) // Both inputs non-negative
    return dividend/divisor;
    else {
    /*
    * For simple code, leveraging BigInteger. Longer and faster
    * code written directly in terms of operations on longs is
    * possible; see "Hacker's Delight" for divide and remainder
    * algorithms.
    */
    return toUnsignedBigInteger(dividend).
    divide(toUnsignedBigInteger(divisor)).longValue();
    }
    } /**
    * Returns the unsigned remainder from dividing the first argument
    * by the second where each argument and the result is interpreted
    * as an unsigned value.
    *
    * @param dividend the value to be divided
    * @param divisor the value doing the dividing
    * @return the unsigned remainder of the first argument divided by
    * the second argument
    * @see #divideUnsigned
    * @since 1.8
    */
    public static long remainderUnsigned(long dividend, long divisor) {
    if (dividend > 0 && divisor > 0) { // signed comparisons
    return dividend % divisor;
    } else {
    if (compareUnsigned(dividend, divisor) < 0) // Avoid explicit check for 0 divisor
    return dividend;
    else
    return toUnsignedBigInteger(dividend).
    remainder(toUnsignedBigInteger(divisor)).longValue();
    }
    } // Bit Twiddling /**
    * The number of bits used to represent a {@code long} value in two's
    * complement binary form.
    *
    * @since 1.5
    */
    @Native public static final int SIZE = 64; /**
    * The number of bytes used to represent a {@code long} value in two's
    * complement binary form.
    *
    * @since 1.8
    */
    public static final int BYTES = SIZE / Byte.SIZE; /**
    * Returns a {@code long} value with at most a single one-bit, in the
    * position of the highest-order ("leftmost") one-bit in the specified
    * {@code long} value. Returns zero if the specified value has no
    * one-bits in its two's complement binary representation, that is, if it
    * is equal to zero.
    *
    * @param i the value whose highest one bit is to be computed
    * @return a {@code long} value with a single one-bit, in the position
    * of the highest-order one-bit in the specified value, or zero if
    * the specified value is itself equal to zero.
    * @since 1.5
    */
    public static long highestOneBit(long i) {
    // HD, Figure 3-1
    i |= (i >> 1);
    i |= (i >> 2);
    i |= (i >> 4);
    i |= (i >> 8);
    i |= (i >> 16);
    i |= (i >> 32);
    return i - (i >>> 1);
    } /**
    * Returns a {@code long} value with at most a single one-bit, in the
    * position of the lowest-order ("rightmost") one-bit in the specified
    * {@code long} value. Returns zero if the specified value has no
    * one-bits in its two's complement binary representation, that is, if it
    * is equal to zero.
    *
    * @param i the value whose lowest one bit is to be computed
    * @return a {@code long} value with a single one-bit, in the position
    * of the lowest-order one-bit in the specified value, or zero if
    * the specified value is itself equal to zero.
    * @since 1.5
    */
    public static long lowestOneBit(long i) {
    // HD, Section 2-1
    return i & -i;
    } /**
    * Returns the number of zero bits preceding the highest-order
    * ("leftmost") one-bit in the two's complement binary representation
    * of the specified {@code long} value. Returns 64 if the
    * specified value has no one-bits in its two's complement representation,
    * in other words if it is equal to zero.
    *
    * <p>Note that this method is closely related to the logarithm base 2.
    * For all positive {@code long} values x:
    * <ul>
    * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
    * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
    * </ul>
    *
    * @param i the value whose number of leading zeros is to be computed
    * @return the number of zero bits preceding the highest-order
    * ("leftmost") one-bit in the two's complement binary representation
    * of the specified {@code long} value, or 64 if the value
    * is equal to zero.
    * @since 1.5
    */
    public static int numberOfLeadingZeros(long i) {
    // HD, Figure 5-6
    if (i == 0)
    return 64;
    int n = 1;
    int x = (int)(i >>> 32);
    if (x == 0) { n += 32; x = (int)i; }
    if (x >>> 16 == 0) { n += 16; x <<= 16; }
    if (x >>> 24 == 0) { n += 8; x <<= 8; }
    if (x >>> 28 == 0) { n += 4; x <<= 4; }
    if (x >>> 30 == 0) { n += 2; x <<= 2; }
    n -= x >>> 31;
    return n;
    } /**
    * Returns the number of zero bits following the lowest-order ("rightmost")
    * one-bit in the two's complement binary representation of the specified
    * {@code long} value. Returns 64 if the specified value has no
    * one-bits in its two's complement representation, in other words if it is
    * equal to zero.
    *
    * @param i the value whose number of trailing zeros is to be computed
    * @return the number of zero bits following the lowest-order ("rightmost")
    * one-bit in the two's complement binary representation of the
    * specified {@code long} value, or 64 if the value is equal
    * to zero.
    * @since 1.5
    */
    public static int numberOfTrailingZeros(long i) {
    // HD, Figure 5-14
    int x, y;
    if (i == 0) return 64;
    int n = 63;
    y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
    y = x <<16; if (y != 0) { n = n -16; x = y; }
    y = x << 8; if (y != 0) { n = n - 8; x = y; }
    y = x << 4; if (y != 0) { n = n - 4; x = y; }
    y = x << 2; if (y != 0) { n = n - 2; x = y; }
    return n - ((x << 1) >>> 31);
    } /**
    * Returns the number of one-bits in the two's complement binary
    * representation of the specified {@code long} value. This function is
    * sometimes referred to as the <i>population count</i>.
    *
    * @param i the value whose bits are to be counted
    * @return the number of one-bits in the two's complement binary
    * representation of the specified {@code long} value.
    * @since 1.5
    */
    public static int bitCount(long i) {
    // HD, Figure 5-14
    i = i - ((i >>> 1) & 0x5555555555555555L);
    i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
    i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
    i = i + (i >>> 8);
    i = i + (i >>> 16);
    i = i + (i >>> 32);
    return (int)i & 0x7f;
    } /**
    * Returns the value obtained by rotating the two's complement binary
    * representation of the specified {@code long} value left by the
    * specified number of bits. (Bits shifted out of the left hand, or
    * high-order, side reenter on the right, or low-order.)
    *
    * <p>Note that left rotation with a negative distance is equivalent to
    * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
    * distance)}. Note also that rotation by any multiple of 64 is a
    * no-op, so all but the last six bits of the rotation distance can be
    * ignored, even if the distance is negative: {@code rotateLeft(val,
    * distance) == rotateLeft(val, distance & 0x3F)}.
    *
    * @param i the value whose bits are to be rotated left
    * @param distance the number of bit positions to rotate left
    * @return the value obtained by rotating the two's complement binary
    * representation of the specified {@code long} value left by the
    * specified number of bits.
    * @since 1.5
    */
    public static long rotateLeft(long i, int distance) {
    return (i << distance) | (i >>> -distance);
    } /**
    * Returns the value obtained by rotating the two's complement binary
    * representation of the specified {@code long} value right by the
    * specified number of bits. (Bits shifted out of the right hand, or
    * low-order, side reenter on the left, or high-order.)
    *
    * <p>Note that right rotation with a negative distance is equivalent to
    * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
    * distance)}. Note also that rotation by any multiple of 64 is a
    * no-op, so all but the last six bits of the rotation distance can be
    * ignored, even if the distance is negative: {@code rotateRight(val,
    * distance) == rotateRight(val, distance & 0x3F)}.
    *
    * @param i the value whose bits are to be rotated right
    * @param distance the number of bit positions to rotate right
    * @return the value obtained by rotating the two's complement binary
    * representation of the specified {@code long} value right by the
    * specified number of bits.
    * @since 1.5
    */
    public static long rotateRight(long i, int distance) {
    return (i >>> distance) | (i << -distance);
    } /**
    * Returns the value obtained by reversing the order of the bits in the
    * two's complement binary representation of the specified {@code long}
    * value.
    *
    * @param i the value to be reversed
    * @return the value obtained by reversing order of the bits in the
    * specified {@code long} value.
    * @since 1.5
    */
    public static long reverse(long i) {
    // HD, Figure 7-1
    i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
    i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
    i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
    i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
    i = (i << 48) | ((i & 0xffff0000L) << 16) |
    ((i >>> 16) & 0xffff0000L) | (i >>> 48);
    return i;
    } /**
    * Returns the signum function of the specified {@code long} value. (The
    * return value is -1 if the specified value is negative; 0 if the
    * specified value is zero; and 1 if the specified value is positive.)
    *
    * @param i the value whose signum is to be computed
    * @return the signum function of the specified {@code long} value.
    * @since 1.5
    */
    public static int signum(long i) {
    // HD, Section 2-7
    return (int) ((i >> 63) | (-i >>> 63));
    } /**
    * Returns the value obtained by reversing the order of the bytes in the
    * two's complement representation of the specified {@code long} value.
    *
    * @param i the value whose bytes are to be reversed
    * @return the value obtained by reversing the bytes in the specified
    * {@code long} value.
    * @since 1.5
    */
    public static long reverseBytes(long i) {
    i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
    return (i << 48) | ((i & 0xffff0000L) << 16) |
    ((i >>> 16) & 0xffff0000L) | (i >>> 48);
    } /**
    * Adds two {@code long} values together as per the + operator.
    *
    * @param a the first operand
    * @param b the second operand
    * @return the sum of {@code a} and {@code b}
    * @see java.util.function.BinaryOperator
    * @since 1.8
    */
    public static long sum(long a, long b) {
    return a + b;
    } /**
    * Returns the greater of two {@code long} values
    * as if by calling {@link Math#max(long, long) Math.max}.
    *
    * @param a the first operand
    * @param b the second operand
    * @return the greater of {@code a} and {@code b}
    * @see java.util.function.BinaryOperator
    * @since 1.8
    */
    public static long max(long a, long b) {
    return Math.max(a, b);
    } /**
    * Returns the smaller of two {@code long} values
    * as if by calling {@link Math#min(long, long) Math.min}.
    *
    * @param a the first operand
    * @param b the second operand
    * @return the smaller of {@code a} and {@code b}
    * @see java.util.function.BinaryOperator
    * @since 1.8
    */
    public static long min(long a, long b) {
    return Math.min(a, b);
    } /** use serialVersionUID from JDK 1.0.2 for interoperability */
    @Native private static final long serialVersionUID = 4290774380558885855L;
    }

    Long Source

    LongCache的常量池 [-128,127] 有效值。