【BZOJ】3994: [SDOI2015]约数个数和

时间:2023-03-08 19:49:03
【BZOJ】3994: [SDOI2015]约数个数和

题意:

\(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} d(ij)\),其中\(d(n)\)表示\(n\)的约数个数

分析

有个结论:

$$\sum_{x_1}^{y_1} \sum_{x_2}^{y_2} \cdots \sum_{x_k}^{y_k} d(x_1 x_2 \cdots x_k) = \sum_{x_1}^{y_1} \sum_{x_2}^{y_2} \cdots \sum_{x_k}^{y_k} \prod_{i=1}^{k} \left \lfloor \frac{y_i}{x_i} \right \rfloor \prod_{i

(证明是二大重数学归纳,数学恐惧症的快快离开。

首先对于\(k=1\),我们可以通过算贡献证明。现在我们对\(k>1\)进行归纳:

我们需要证明:$$d_1(y_1, y_2, \cdots, y_k) = \sum_{x_1}^{y_1} \sum_{x_2}^{y_2} \cdots \sum_{x_k}^{y_k} d(x_1 x_2 \cdots x_k) = f_1 (y_1, y_2, \cdots, y_k) = \sum_{x_1}^{y_1} \sum_{x_2}^{y_2} \cdots \sum_{x_k}^{y_k} \prod_{i=1}^{k} \left \lfloor \frac{y_i}{x_i} \right \rfloor \prod_{i < j} [(x_i, x_j)=1]$$

我们通过\(y_1\)来归纳:

首先\(y_1=1\)时,发现就是\(k-1\)维的证明,根据归纳条件,成立。

然后对于\(y_1 > 1\),我们设$$d_2(y_1, y_2, \cdots, y_k) = d_1(y_1, y_2, \cdots, y_k) - d_1(y_1-1, y_2, \cdots, y_k)$$ $$f_2(y_1, y_2, \cdots, y_k) = f_1(y_1, y_2, \cdots, y_k) - f_1(y_1-1, y_2, \cdots, y_k)$$然后用\(y_2\)归纳\(d_2 = f_2\)。一直这样做下去,直到需要归纳\(d_{k+1} = f_{k+1}\):

就是需要证明这个结论:

\[d_{k+1}(y_1, y_2, \cdots, y_k) = d(y_1 y_2 \cdots y_k) = f_{k+1}(y_1, y_2, \cdots, y_k) = \sum_{x_1|y_1} \sum_{x_2|y_2} \cdots \sum_{x_k|y_k} \prod_{i < j} [(x_i, x_j)=1]
\]

这个结论通过讨论质因子的贡献就能证明出。

题解

于是剩下的不多说,分块大法。

$$
\begin{align}
ans
& =
\sum_{i=1}^{n}
\sum_{j=1}^{m} d(ij)
\\

& =

\sum_{i=1}^{n}

\sum_{j=1}^{m} \left \lfloor \frac{n}{i} \right \rfloor \left \lfloor \frac{m}{j} \right \rfloor [(i, j)=1]

\

& =

\sum_{d=1}^{n} \mu(d)

\sum_{i=1}^{ \left \lfloor \frac{n}{d} \right \rfloor }

\sum_{j=1}^{ \left \lfloor \frac{m}{d} \right \rfloor } \left \lfloor \frac{n}{id} \right \rfloor \left \lfloor \frac{m}{jd} \right \rfloor

\

& =

\sum_{d=1}^{n} \mu(d)

\sum_{i=1}^{ \left \lfloor \frac{n}{d} \right \rfloor } \left \lfloor \frac{ \left \lfloor \frac{n}{d} \right \rfloor }{i} \right \rfloor

\sum_{j=1}^{ \left \lfloor \frac{m}{d} \right \rfloor } \left \lfloor \frac{ \left \lfloor \frac{m}{d} \right \rfloor }{j} \right \rfloor

\

\end{align}

\[</p>

我们用$O(n^{1.5})$预处理$d(n) = \sum_{i=1}^{n} \left \lfloor \frac{n}{i} \right \rfloor$,然后就解决拉(其实是可以乱搞一下然后用线性筛筛的)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int Lim=50000, N=50005;
int p[N], np[N], pcnt, mu[N];
ll d[N];
void init() {
mu[1]=1;
for(int i=2; i<=Lim; ++i) {
if(!np[i]) {
p[pcnt++]=i;
mu[i]=-1;
}
for(int j=0; j<pcnt; ++j) {
int t=p[j]*i;
if(t>Lim) break;
np[t]=1;
if(i%p[j]==0) break;
mu[t]=-mu[i];
}
}
for(int n=1; n<=Lim; ++n) {
for(int i=1, pos=1; i<=n; i=pos+1) {
pos=n/(n/i);
d[n]+=(ll)(pos-i+1)*(n/i);
}
mu[n]+=mu[n-1];
}
}
void work() {
int n, m;
ll ans=0;
scanf("%d%d", &n, &m);
if(n>m) {
swap(n, m);
}
for(int i=1, pos=1; i<=n; i=pos+1) {
pos=min(n/(n/i), m/(m/i));
ans+=(ll)(mu[pos]-mu[i-1])*d[n/i]*d[m/i];
}
printf("%lld\n", ans);
}
int main() {
int T;
scanf("%d", &T);
init();
while(T--) {
work();
}
return 0;
}\]