ZH奶酪:【阅读笔记】Deep Learning, NLP, and Representations

时间:2023-03-09 19:48:10
ZH奶酪:【阅读笔记】Deep Learning, NLP, and Representations

中文译文:深度学习、自然语言处理和表征方法

http://blog.jobbole.com/77709/

英文原文:Deep Learning, NLP, and Representations

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

总结:

这篇文章中主要提到了单层神经网络,单词嵌入(word embeddings),表征这几个概念,结合具体的实例,写的是通俗易懂,在引用参考文献的位置都给出了对应的链接,一些参考文献中的工作还是挺有意思的。

关于单层神经网络,介绍的浅显易懂,把神经网络比作查询表,很直观。

关于单词嵌入,文中介绍的意思是把一个词转换为一个多维向量,还用t-SNE工具直观的给出了单词嵌入空间的图,加上表格中的例子,更加易懂了。比较有意思的就是相同的词在单词嵌入空间中的距离是很近的,这个特点很有利用价值,利用这一点,提到了一些具体的应用场景,例如语法错误检查,性别类中不同代词(男-女,叔叔-阿姨,国王-王后等)之间的距离也是很相似的。关于这些应用,原文的作者的评价是,这些都是在研究方法的过程中所得的副产品。

关于表征representation,单词嵌入应该就算是一种吧,文中重点介绍了共同表征/共享嵌入(shared representation),将多个不同空间的嵌入信息映射到同一个空间,并介绍了两个很好的应用场景——双语单词嵌入和图像-文字嵌入。

双语单词嵌入,把两个语言中的单词嵌入空间用图像直观的看的话,形状是相似的,相似的词在图像中所处的位置是临近的。

图像-文字嵌入,也是相同概念的信息比较接近,例如猫的图像距离文字“猫”就很近,汽车的图像距离“汽车”就很近。这里引用了斯坦福一个小组和谷歌一个小组的工作,感觉挺有意思。

最后介绍了递归神经网络以及为什么适用于NLP。

整体来看,这篇文章更像是一篇不错的科普文章,个人认为读完之后还是有收获的,尤其是Word Embedding这个概念。

昨天搜了一下关于深度学习的相关博客,感觉很有难度。

感觉自己还是只知其一不知其二,不知道怎么在NLP中使用DL。

下面是英文原文中一些个人认为不错的概念和句子。

1:It’s true, essentially, because the hidden layer can be used as a lookup table.

2:word embeddings;

3:It seems natural for a network to make words with similar meanings have similar vectors.

4:You’ve seen all the words that you understand before, but you haven’t seen all the sentences that you understand before. So too with neural networks.

5:Word embeddings exhibit an even more remarkable property: analogies between words seem to be encoded in the difference vectors between words.

6:This general tactic – learning a good representation on a task A and then using it on a task B – is one of the major tricks in the Deep Learning toolbox. It goes by different names depending on the details: pretraining, transfer learning, and multi-task learning. One of the great strengths of this approach is that it allows the representation to learn from more than one kind of data.

There’s a counterpart to this trick. Instead of learning a way to represent one kind of data and using it to perform multiple kinds of tasks, we can learn a way to map multiple kinds of data into a single representation!

7:Shared Representations

(1)Bilingual Word Embeddings;

(2)Embed images and words in a single representation;

8:By merging sequences of words, A takes us from representing words to representing phrases or even representing whole sentences! And because we can merge together different numbers of words, we don’t have to have a fixed number of inputs.