Boring Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 698 Accepted Submission(s):
346
boring.
Here is the problem. Given an integer sequence a1,
a2, …, an, let S(i) = {j|1<=j<i, and aj
is a multiple of ai}. If S(i) is not empty, let f(i) be the maximum
integer in S(i); otherwise, f(i) = i. Now we define bi as af(i).
Similarly, let T(i) = {j|i<j<=n, and aj is a multiple of
ai}. If T(i) is not empty, let g(i) be the minimum integer in T(i);
otherwise, g(i) = i. Now we define ci as ag(i). The
boring sum of this sequence is defined as b1 * c1 +
b2 * c2 + … + bn * cn.
Given
an integer sequence, your task is to calculate its boring sum.
Each
case consists of two lines. The first line contains an integer n
(1<=n<=100000). The second line contains n integers a1,
a2, …, an (1<= ai<=100000).
The
input is terminated by n = 0.
In the sample, b1=1, c1=4, b2=4, c2=4, b3=4, c3=2, b4=3, c4=9, b5=9, c5=9, so b1 * c1 + b2 * c2 + … + b5 * c5 = 136.
/**
给出一个数列:a[i],然后
b[i]:表示在 i 前面的项,如果有a[i]的倍数(要最靠近i的),那么b[i]就等于这个数,如果没有那么b[i] = a[i];
c[i]:表示在 i 后面的项,如果有a[i]的倍数(要最靠近i的),那么c[i] 就等于这个数,如果没有那么c[i] = a[i];
**/
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<vector>
using namespace std; int a[],b[],c[];
vector<int>Q[];
int hash1[];
int main()
{
int n;
int MAX,MIN,k;
for(int i=;i<=;i++)
for(int j=i;j<=;j=j+i)
Q[i].push_back(j);
while(scanf("%d",&n)>)
{
if(n==)break;
for(int i=; i<=n; i++){
scanf("%d",&a[i]);
b[i] = c[i] = a[i];
}
memset(hash1,,sizeof(hash1));
hash1[a[]] = ;
for(int i=;i<=n;i++)
{
if(a[i]==){
b[i] = a[i-];
continue;
}
k = Q[a[i]].size();
MAX = -;
for(int j=;j<k;j++)
if(hash1[Q[a[i]][j]]!= && MAX<hash1[Q[a[i]][j]])
MAX = hash1[Q[a[i]][j]]; if(MAX == -);
else b[i] = a[MAX];
hash1[a[i]] = i;
}
memset(hash1,,sizeof(hash1));
hash1[a[n]] = n;
for(int i=n-;i>=;i--)
{
if(a[i]==) { c[i] = a[i+]; continue;}
MIN = ;
k = Q[a[i]].size();
for(int j=;j<k;j++)
if(hash1[Q[a[i]][j]]!= && MIN>hash1[Q[a[i]][j]])
MIN = hash1[Q[a[i]][j]];
if(MIN == );
else c[i] = a[MIN];
hash1[a[i]] = i;
}
__int64 sum = ;
for(int i=;i<=n;i++)
sum = sum+((__int64)b[i])*c[i];
printf("%I64d\n",sum);
}
return ;
}