ShellCode瘦身的艺术0_HASH

时间:2021-07-23 21:30:56

写在前面的话:

前面几篇文章,我们介绍了如何获取kernerl32.dll导出函数地址的方法;

并在此基础上,编写了ShellCode,实现了动态加载DLL以及解析API地址;

但是,似乎还称不上Perfect,我们能够获取到LoadLibrary和GetProcAddress,事情就结束了吗?

我们仍然需要给他们push一些个参数,那些API的名字,占用了我们ShellCode的大部分空间;(如果API较多的话)

这使得我们的ShellCode看上去不那么美妙,因此,对API做HASH势在必行;

那也许有朋友会问:做了HASH,总有一处还原的地方吧,如果不还原,那程序里就一定有字符串存在;否则,GetProcAddress怎么玩呢?

也因此,我们对Kernel32.dll导出表的解析,就需要一般化一下了;让它不止适应于kernel32.dll,而是windows下的任何32位的PE文件;

(64位类似,解析PE,都一样,笔者就拿32位举例了,有兴趣的朋友也可以自行解析)

如果能够做到,那我们的HASH才会有意义,因为,ENT里就有API名字了;

因此,在开始HASH运算前,我们先来搞一下之前的那部分程序;

零:导出表一般化解析

0. 先来看下PE的DOS头结构

typedef struct _IMAGE_DOS_HEADER {      // DOS .EXE header
WORD e_magic; // Magic number
WORD e_cblp; // Bytes on last page of file
WORD e_cp; // Pages in file
WORD e_crlc; // Relocations
WORD e_cparhdr; // Size of header in paragraphs
WORD e_minalloc; // Minimum extra paragraphs needed
WORD e_maxalloc; // Maximum extra paragraphs needed
WORD e_ss; // Initial (relative) SS value
WORD e_sp; // Initial SP value
WORD e_csum; // Checksum
WORD e_ip; // Initial IP value
WORD e_cs; // Initial (relative) CS value
WORD e_lfarlc; // File address of relocation table
WORD e_ovno; // Overlay number
WORD e_res[]; // Reserved words
WORD e_oemid; // OEM identifier (for e_oeminfo)
WORD e_oeminfo; // OEM information; e_oemid specific
WORD e_res2[]; // Reserved words
LONG e_lfanew; // File address of new exe header
} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

我们需要关注的是最后一个字段,这个里的内容是NT头的偏移,首先,看下,这个字段在本结构体的偏移60(0x3C)

也就是说,[BaseAddr+0x3C]就是e_lfanew的值,因此,NT头的首地址BaseAddr+e_lfanew;

那再看下NT头的结构:

typedef struct _IMAGE_NT_HEADERS {
DWORD Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER32 OptionalHeader;
} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32; // NT头中的文件头20Byte
typedef struct _IMAGE_FILE_HEADER {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER; // NT头中的扩展头
typedef struct _IMAGE_OPTIONAL_HEADER {
//
// Standard fields.
// WORD Magic;
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;
DWORD SizeOfCode;
DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;
DWORD BaseOfData; //
// NT additional fields.
// DWORD ImageBase;
DWORD SectionAlignment;
DWORD FileAlignment;
WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;
WORD MinorImageVersion;
WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;
DWORD SizeOfImage;
DWORD SizeOfHeaders;
DWORD CheckSum;
WORD Subsystem;
WORD DllCharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;
DWORD SizeOfHeapReserve;
DWORD SizeOfHeapCommit;
DWORD LoaderFlags;
DWORD NumberOfRvaAndSizes;
IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32; typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY; #define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16

我们要找什么呢,导出表的RVA,导出表是扩展头里的第0号元素;因此,计算出的数据目录表[导出表]相对NT头的偏移,就是0x78;

至此,我们通过分析DOS头和NT头结构,得到了下面的信息:

0、e_lfanew = [BaseAddr+0x3C]

1、NTStartVA:BaseAddr + e_lfnew

2、ExportStartRVA:[NTStartVA + 0x78]

3、ExportStartVA:BaseAddr + ExportStartRVA

到这一步,接下来就需要看下导出表的结构了

typedef struct _IMAGE_EXPORT_DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
DWORD Name;
DWORD Base;
DWORD NumberOfFunctions;
DWORD NumberOfNames;
DWORD AddressOfFunctions; // RVA from base of image
DWORD AddressOfNames; // RVA from base of image
DWORD AddressOfNameOrdinals; // RVA from base of image
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

需要的字段,EAT/ENT/EOT,我们在上边的分析中,其实已经得到了这个导出表结构体的首地址了,就是ExportStartVA,那就简单了

4、EATRVA = [ExportStartVA + 0x1C]  -> EAT = BaseAddr + EATRVA

5、ENTRVA = [ExportStartVA + 0x20]  -> ENT = BaseAddr + ENTRVA

6、EOTRVA = [ExportStartVA + 0x24]  -> EOT = BaseAddr + EOTRVA

至此,分析结束,开始编写代码;

一、代码(为了便于理解,咱们封装成一些裸函数)

0、获取基址

void __declspec(naked) GetKernelBase() {
_asm {
push ebp;
mov ebp, esp;
sub esp, 0x0C;
mov eax, fs:[0x30]; // PEB
mov eax, [eax + 0xC]; // LDR
mov eax, [eax + 0xC]; // InLoadOrderModuleList, exe
mov eax, [eax]; // nt.dll
mov eax, [eax]; // kernel32.dll
mov eax, dword ptr ds : [eax + 0x18]; // BaseAddr;
mov esp, ebp;
pop ebp;
ret;
}
}

1、解析导出表,部分关键代码(全部代码,考虑下,还是在我们写完HASH算法后贴出来)

_asm{
push ebp;
mov ebp, esp;
sub esp, 0x10;
push ebx;
push ecx;
push esi;
push edi; ... mov [ebp - 0x4], eax; // [ebp - 0x4] -> BaseAddr
mov eax, [eax + 0x3C]; // e_lfanew
add eax, [ebp - 0x4]; // NTStartVA
mov eax, [eax + 0x78]; // ExportStartRVA
add eax, [ebp - 0x4]; // ExportStart_VA
mov ebx, [eax + 0x1C]; // EATRVA
add ebx, [ebp - 0x4]; // EAT
mov [ebp - 0x8], ebx; // [ebp - 0x8] -> EAT
mov ebx, [eax + 0x20]; // ENTRVA
add ebx, [ebp - 0x4]; // ENT
mov [ebp - 0xC], ebx; // [ebp - 0xC] -> ENT
mov ebx, [eax + 0x24]; // EOTRVA
add ebx, [ebp - 0x4]; // EOT
mov [ebp - 0x10], ebx; // [ebp - 0x10] -> EOT ... pop edi;
pop esi;
pop ecx;
pop ebx;
mov esp, ebp;
pop ebp;
ret;
}

2、接下来就要考虑如何实现HASH算法了

要求:尽量简单,又不失功能;(不同的API的HASH碰撞几率越小越好,同时ShellCode里,要兼顾体积)

/*
* @1 API
* @2 Length
*/
void __declspec(naked) ApiHash() {
_asm {
push ebp;
mov ebp, esp;
sub esp, 0x8;
mov dword ptr[ebp - 0x4], 0x6B821B17; // Init Hash Value
mov dword ptr[ebp - 0x8], ; // Init Local Var
jmp short _begin; _loop:
mov eax, [ebp + 0x8]; // eax = srcApi
add eax, 0x1; // eax = srcApi + 1
mov[ebp + 0x8], eax; // srcApi++
mov ecx, [ebp - 0x8]; // ecx = i
add ecx, 0x1; // ecx += 1
mov[ebp - 0x8], ecx; // i++ _begin:
mov edx, [ebp - 0x8]; // edx = i
cmp edx, [ebp + 0xC]; // edx vs len
jnb short _end; // if (edx >= len) exit;
mov eax, [ebp - 0x4]; // eax = Hash
shl eax, 0x5; // eax = Hash << 5
mov ecx, [ebp + ]; // ecx = srcApi
movsx edx, byte ptr[ecx]; // edx = *srcApi
add eax, edx; // eax = Hash << 5 + *srcApi
mov ecx, [ebp - 0x4]; // ecx = Hash
shr ecx, 0x2; // ecx = Hash >> 2
add eax, ecx; // eax = Hash << 5 + *srcApi + Hash >> 2
xor eax, [ebp - 0x4];
mov[ebp - 0x4], eax; // Hash ^= (Hash << 5 + *srcApi + Hash >> 2);
jmp short _loop; _end:
mov eax, [ebp - 0x4]; // eax = Hash
mov esp, ebp;
pop ebp;
ret 0x8;
}
}

3、既然HASH算法也有了,在开始编写获取API的函数之前,先实现一个获取字符串长度的函数;

/*
* @ String
*/
void __declspec(naked) asmstrlen() {
_asm {
push ebp;
mov ebp, esp;
sub esp, 0x4;
mov dword ptr [ebp - 0x4], ;
jmp short _begin; _loop:
mov eax, [ebp + 0x8]; // eax = String
add eax, 0x1; // eax = String + 1
mov [ebp + 0x8], eax; // String++
mov ecx, [ebp - 0x4]; // ecx = i
add ecx, 0x1; // ecx += 1
mov [ebp - 0x4], ecx; // i++ _begin:
mov ecx, [ebp + ]; // ecx = String
movsx edx, byte ptr [ecx]; // edx = *String
cmp edx, ;
je _end;
jmp _loop; _end:
mov eax, [ebp - 0x4]; // eax = len
mov esp, ebp;
pop ebp;
ret 0x4;
}
}

4、接下来,就要编写通过HASH获取API地址的函数了

/*
* @1 BaseAddr
* @2 HASH
*/
void __declspec(naked) GetHASHAPIAddr() {
_asm {
push ebp;
mov ebp, esp;
sub esp, 0x14;
push esi;
push edi; mov eax, [ebp + ]; // BaseAddr
mov [ebp - 0x4], eax;
mov eax, [eax + 0x3C]; // e_lfanew
add eax, [ebp - 0x4]; // NTStartVA
mov eax, [eax + 0x78]; // ExportStartRVA
add eax, [ebp - 0x4]; // ExportStart_VA
mov ebx, [eax + 0x1C]; // EATRVA
add ebx, [ebp - 0x4]; // EAT
mov [ebp - 0x8], ebx; // [ebp - 0x8] -> EAT
mov ebx, [eax + 0x20]; // ENTRVA
add ebx, [ebp - 0x4]; // ENT
mov [ebp - 0xC], ebx; // [ebp - 0xC] -> ENT
mov ebx, [eax + 0x24]; // EOTRVA
add ebx, [ebp - 0x4]; // EOT
mov [ebp - 0x10], ebx; // [ebp - 0x10] -> EOT xor ebx, ebx;
mov eax, [eax + 0x18]; // NumOfNames
mov [ebp - 0x14], eax;
cld; _ENT_FIND:
mov esi, [ebp - 0xC]; // ENTStartVA
mov esi, [esi + * ebx]; // ENTContentRVA
add esi, [ebp - 0x4]; // ENTContentVA
push esi;
push esi;
call asmstrlen;
pop esi;
push eax;
push esi;
call ApiHash;
mov edi, [ebp + 0xC]; // HASH
cmp eax, edi;
je _ENT_OK;
inc ebx;
mov eax, [ebp - 0x14];
dec eax;
mov [ebp - 0x14], eax;
cmp eax, ;
jg _ENT_FIND;
jmp _ENT_END; _ENT_OK:
mov ecx, [ebp - 0x10]; // EOTStartVA
mov ecx, [ecx + * ebx];
and ecx, 0xFFFF;
mov esi, [ebp - 0x8]; // EATStartVA
mov eax, [esi + * ecx]; // EAT Address RVA
add eax, [ebp - 0x4]; // EAT Address VA _ENT_END:
pop edi;
pop esi;
mov esp, ebp;
pop ebp;
ret 0x8;
}
}

我们只需要事先准备好需要的API的HASH值,就可以了,下面让我们来测试下;

5、测试

int main(int argc, char** argv) {
DWORD LoadLibAddr = ;
_asm {
call GetKernelBase;
push 0x28182EF6; // LoadLibrayA HASH
push eax;
call GetHASHAPIAddr;
mov LoadLibAddr, eax;
} printf("LoadLibrary[0x%X]\n", LoadLibAddr); getchar(); return ;
}

ShellCode瘦身的艺术0_HASH

我们在调试器中输入这个地址:

ShellCode瘦身的艺术0_HASH

可以看到,获取到了这个函数的地址;

获取有同学会说,这个是在kernel32.dll里的,其他dll里的函数也可以吗;当然了,看我们的GetHashAPIAddr参数就知道了;

来代码吧,搞一个MessageBox的函数,这个是在user32.dll里的,见代码,运行后会弹框,证明就成功了;

int main(int argc, char** argv) {
char srcDll[] = "user32.dll";
DWORD LoadLibAddr = ; _asm {
call GetKernelBase;
push 0x28182EF6; // LoadLibrayA HASH
push eax;
call GetHASHAPIAddr;
mov LoadLibAddr, eax; push esi;
mov esi, eax;
lea eax, srcDll;
push eax;
call esi;
push 0x564B6854; // MessageBoxA HASH
push eax;
call GetHASHAPIAddr; push ;
push ;
push ;
push ;
call eax;
} printf("LoadLibraryA[0x%X]\n", LoadLibAddr); getchar(); return ;
}

ShellCode瘦身的艺术0_HASH

至此,我们的API算是都准备好了,通过实现HASH算法,我们去掉了占用体积过大的API字符串,瘦身的目的达到了;

在后续的文章中,笔者将带领大家一起分析ShellCode中的截断问题,敬请期待;