http://www.lydsy.com/JudgeOnline/problem.php?id=1570 (题目链接)
题意
给出$m$个航班,每天只能做一次飞机,有$T$人从起点到终点,问最晚到达的人最早什么时候到。
Solution
枚举答案分层建图最大流判断即可。之前的流量不要清空。
细节
?
代码
// bzoj1570
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<30)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std; const int maxn=1000010;
int head[maxn],n,m,T,et,ans,cnt=1;
struct data {int u,v,w;}t[maxn];
struct edge {int to,next,w;}e[maxn]; void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],0};head[v]=cnt;
} namespace Dinic {
int d[maxn],s,t;
bool bfs(int s,int t) {
memset(d,-1,sizeof(d));
queue<int> q;q.push(s);d[s]=0;
while (!q.empty()) {
int x=q.front();q.pop();
for (int i=head[x];i;i=e[i].next)
if (e[i].w && d[e[i].to]<0) d[e[i].to]=d[x]+1,q.push(e[i].to);
}
return d[t]>0;
}
int dfs(int x,int f) {
if (x==t || f==0) return f;
int w,used=0;
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
w=dfs(e[i].to,min(e[i].w,f-used));
used+=w;e[i].w-=w;e[i^1].w+=w;
if (used==f) return used;
}
if (!used) d[x]=-1;
return used;
}
int main(int x,int y) {
s=x,t=y;int flow=0;
while (bfs(x,y)) flow+=dfs(x,inf);
return flow;
}
} int main() {
scanf("%d%d%d",&n,&m,&T);
for (int i=1;i<=m;i++) scanf("%d%d%d",&t[i].u,&t[i].v,&t[i].w);
link(0,1,T);et=1000000;
for (int i=0;1;i++) {
for (int j=1;j<=n;j++) link(i*n+j,(i+1)*n+j,inf);
for (int j=1;j<=m;j++) link(i*n+t[j].u,(i+1)*n+t[j].v,t[j].w);
link((i+1)*n,et,inf);
ans+=Dinic::main(0,et);
if (ans==T) {printf("%d",i);break;}
}
return 0;
}