1142. Relations
Time limit: 1.0 second
Memory limit: 64 MB
Memory limit: 64 MB
Background
Consider a specific set of comparable objects. Between two objects a and b, there exits one of the following three classified relations:
a = b
a < b
b < a
a < b
b < a
Because relation '=' is symmetric, it is not repeated above.
So, with 3 objects (a, b, c), there can exist 13 classified relations:
a = b = c a = b < c c < a = b a < b = c
b = c < a a = c < b b < a = c a < b < c
a < c < b b < a < c b < c < a c < a < b
c < b < a
b = c < a a = c < b b < a = c a < b < c
a < c < b b < a < c b < c < a c < a < b
c < b < a
Problem
Given N, determine the number of different classified relations between N objects.
Input
Includes many integers N (in the range from 2 to 10), each number on one line. Ends with −1.
Output
For each N of input, print the number of classified relations found, each number on one line.
Sample
input | output |
---|---|
2 |
3 |
Tags: none (hide tags for unsolved problems)
Difficulty: 144
题意:计算N个数的大小比较关系的可能情况的总数。
分析:n个数,中间插入一些小于号。其余位置用等号。
等号相连的数的位置没有区别。
问题相当于问将n个数分为几个部分有多少种办法。
dp即可
dp[i][j]表示i个数,分为j组的方案数。
dp[i][j] += dp[i - 1][j] * j 表示第i个数有j中选择加入。
dp[i][j] += dp[i-1][j-1] * j 表示第i个数自立门户,然后这个新的部分插入其他j-1个已经确立大小关系的部分的方法有j种
/**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
int n;
int dp[N][N], ans[N]; inline void Init()
{
dp[][] = ;
for(int i = ; i <= ; i++)
for(int j = ; j <= i; j++)
dp[i][j] = dp[i - ][j] * j + dp[i - ][j - ] * j;
for(int i = ; i <= ; i++)
for(int j = ; j <= i; j++)
ans[i] += dp[i][j];
} inline void Solve(); inline void Input()
{
Init();
while(scanf("%d", &n) == )
{
if(n == -) return;
Solve();
}
} inline void Solve()
{
printf("%d\n", ans[n]);
} int main()
{
freopen("a.in", "r", stdin);
Input();
//Solve();
return ;
}