%%matlab实现hog特征
%修改自http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html
%input: img
%output: final_descriptor
clear all; close all; clc;
%img=double(imread('lena.jpg'));
%img=imread('man.png');
img=imread('e:/work/matlab/data/252.jpg');
img=rgb2gray(img); %简单起见,彩图转灰度图。后续可以改进。
img=imresize(img, [128 64]);
img=double(img);
[h, w, ~] = size(img);
%下面是求cell
cell_size=8; %step*step个像素作为一个cell. cell_size=pixels_per_cell
orient=9; %方向直方图包含的方向数
angle_range=180/orient; %每个方向包含的角度数
h=round(h/cell_size)*cell_size;
w=round(w/cell_size)*cell_size;
img=img(1:h,1:w,:);
%img = sqrt(img); %伽马校正。J=AI^r 此处取A=1,r=0.5
% 下面是求边缘
fy=[-1 0 1]; %定义竖直模版
fx=fy'; %定义水平模版
Gy=imfilter(img, fy, 'replicate'); %竖直梯度
Gx=imfilter(img, fx, 'replicate'); %水平梯度
Gmag=sqrt(Gx.^2+Gy.^2); %梯度幅值
%为每个cell计算其decriptor(梯度方向直方图,即一个1*orient规格的向量)
cell_descriptors=zeros(orient, h/cell_size, w/cell_size);
idx_y=1;
for y=1:cell_size:h
idx_x=1;
for x=1:cell_size:w
tmpx=Gx(y:y+cell_size-1, x:x+cell_size-1);
tmpy=Gy(y:y+cell_size-1, x:x+cell_size-1);
tmped=Gmag(y:y+cell_size-1,x:x+cell_size-1);
tmped=tmped/sum(sum(tmped)); %局部边缘强度归一化
cell_hist=zeros(1, orient); %当前cell_size*cell_size像素统计角度直方图,就是cell
for p=1:cell_size
for q=1:cell_size
ang=atan2(tmpy(p,q), tmpx(p,q)); %atan2返回的是[-pi,pi]之间的弧度值
ang=mod(ang*180/pi, 180); %先转角度,再划归到[0,180)之间。因为mod的参数现在不是整数,因此会大于179.
ang=ang+0.0000001; %防止ang为0
bin_id = ceil(ang/angle_range);%得到的bin_id \in [1,9]
cell_hist(bin_id)=cell_hist(bin_id)+tmped(p,q); %ceil向上取整,使用边缘强度加权。此处根据梯度方向进行vote,权值为梯度幅值
end
end
cell_descriptors(:,idx_y,idx_x) = cell_hist;
idx_x = idx_x + 1;
end
idx_y = idx_y + 1;
end
%下面是计算feature,block_size*block_size个cell合成一个block
%比如block_size取2
[~, h, w]=size(cell_descriptors);
block_size=2; %cells_per_block=2,即每个block_size=2*8=16像素
stride=1;
h_max=floor((h-block_size)/stride)+1;
w_max=floor((w-block_size)/stride)+1;
block_descriptors=zeros(block_size*block_size*orient, h_max, w_max);
for i=1:h_max
for j=1:w_max
blk_mat=cell_descriptors(:,i:i+block_size-1, j:j+block_size-1);
normed_blk_mat=zz_normalize(blk_mat);
reshaped_blk_mat=reshape(normed_blk_mat, [1 block_size*block_size*orient]);
block_descriptors(:,i,j)=reshaped_blk_mat;
end
end
%将block_descriptors进行拼接,得到final_descriptor
[d1,d2,d3]=size(block_descriptors);
dimensions=d1*d2*d3;
final_descriptor=zeros(1, dimensions);
k=1;
for i=1:d2
for j=1:d3
final_descriptor(k:k+d1-1)=block_descriptors(:,i,j);
k=k+d1;
end
end