BZoj 1003 物流运输 DP+最短路

时间:2023-03-08 19:29:43

2013-09-11 09:56

W[I]代表前I天能取得的最小花费,假设在第J天更改一次路线,那么如果有

W[I]>W[J]+第j+1到第I天的最小花费+更改路线的花费(K) 那么更新W[I];

用最短路求第J+1到I的最短路*(I-J),边界则是W[1]=0;

因为最开始的路线不用更改(就是最初的路线不算在更改的费用中),这个

方程默认第一次的路线就是更改后的,多加了一次K,所以最后输出W[I]-K;

//By BLADEVIL
var
connect :array[..,..] of longint;
n, m, k, e, ch :longint;
c :array[..,..] of longint;
w :array[..] of longint;
d :array[..] of longint;
vis :array[..] of boolean; procedure init;
var
i, j :longint;
x, y, z :longint;
begin
assign(input,'santajs.in'); reset(input);
assign(output,'santajs.out'); rewrite(output);
read(n,m,k,e);
fillchar(connect,sizeof(connect),);
for i:= to e do
begin
read(x,y,z);
if z<connect[x,y] then
begin
connect[x,y]:=z;
connect[y,x]:=z;
end;
end;
read(ch);
for i:= to ch do
begin
read(x,y,z);
for j:=y to z do
begin
inc(c[j,]);
c[j,c[j,]]:=x;
end;
end;
end; function dijkstra(s,t:longint):longint;
var
i, j, max, k :longint;
begin
fillchar(vis,sizeof(vis),false);
for i:= to m do d[i]:=maxlongint;
d[]:=;
for i:=s to t do
for j:= to c[i,] do
vis[c[i,j]]:=true; for i:= to m- do
begin
max:=maxlongint;
for j:= to m do
if (not vis[j]) and (d[j]<max) then
begin
k:=j;
max:=d[j];
end;
vis[k]:=true;
for j:= to m do if d[j]>d[k]+connect[k,j] then d[j]:=d[k]+connect[k,j];
end;
exit(d[m]);
end; procedure dp;
var
i, j, x :longint;
begin
for i:= to n do
begin
w[i]:=maxlongint div ;
for j:= to i- do
begin
x:=dijkstra(j+,i);
if x> then continue;
if w[i]>w[j]+k+(i-j)*x then w[i]:=w[j]+k+(i-j)*x;
end;
end;
writeln(w[n]-k);
close(input); close(output);
end; begin
init;
dp;
end.