【关键字】c++关键字

时间:2023-03-09 14:43:41
【关键字】c++关键字

1. alignas (c++11)

设置类和struct的字节对齐方式

默认取值是:  2n : 0, 1, 2, 4 , 6, 8.....

2. alignof

区分sizeof(), alignof得到字节对齐的字节数

#include <iostream>
using namespace std; //对结构体或类进行表示, 设置对齐方式为8字节
struct alignas() S {}; //struct alignas(1) U { S s; } // warning //有字节对齐(以4字节为对齐方式)
struct Foo
{
int i;
float f;
char c;
}; struct Empty {}; struct alignas() Empty64 {}; struct alignas() Double {
double d;
}; //以四字节为对齐方式, 即sizeof(Obj) == 8
struct Obj {
char a;
int b;
}; void alignInfo()
{
cout << "sizeof(Obj) : " << sizeof(Obj) << endl; //
cout << "alignof(Obj) : " << alignof(Obj) << endl; //
cout << "sizeof(Foo) : " << sizeof(Foo) << endl; //
cout << "sizeof(Double) : " << sizeof(Double) << endl; //
cout << "sizeof(Empty64) : " << sizeof(Empty64) << endl; // cout << "\n"; cout << "Alignment of " << endl;
cout << "- char : " << alignof(char) << endl; //
cout << "- pointer : " << alignof(int*) << endl; //
cout << "- class Foo : " << alignof(Foo) << endl; //
cout << "- empty class : " << alignof(Empty) << endl; //
cout << "- alignas(64) Empty: " << alignof(Empty64) << endl; //
cout << "- alignas(1) Double: " << alignof(Double) << endl; //
} int main()
{
alignInfo(); return ;
}

【关键字】c++关键字

3. auto (c++11)

#include <iostream>
using namespace std; double add(double a, double b)
{
return a + b;
} double get_fun(int a)
{
return a;
} void showAuto()
{
int aa = + ;
auto a = + ;
cout << "type of a: " << typeid(a).name() << endl; auto b = add(, 1.2);
cout << "type of b: " << typeid(b).name() << endl; auto c = {, };
cout << "type of c: " << typeid(c).name() << endl; auto my_lambda = [](int x) { return x + ; };
std::cout << "my_lambda: " << my_lambda() << endl; auto my_fun = get_fun();
cout << "type of my_fun: " << typeid(my_fun).name() << endl;
cout << "my_fun: " << get_fun() << endl; } int main()
{ showAuto();
return ;
}

【关键字】c++关键字

4. bitand 和 bitor

#include <iostream>
using namespace std; void showBitAndOr()
{
auto a = 3L;
auto b = ; //long
auto c = a bitand b; // &
auto d = a bitor b; // | cout << c << endl; cout << d << endl;
} int main()
{
showBitAndOr(); return ;
}

5. constexpr: 常量表达式(c++11)

  • 用于编译时的常量与常量函数。
  • 声明为constexpr函数的意义是:如果其参数均为合适的编译期常量,则对这个constexpr函数的调用就可用于 期望常量表达式 的场合(如模板的非类型参数,或枚举常量的值)。
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std; int fact(int n)
{
return n < ? : (n * fact(n - ));
} //编译器在编译器时, 就求出来返回的值了
constexpr int factorial(int n)
{
return n <= ? : (n * factorial(n - ));
} template<int N>
struct NN {
void print()
{
cout << N << endl;
}
}; int main(int argc, char *argv[])
{ //在编译器编译时调用的
if (argc > ) factorial(atoi(argv[])); auto aa = fact();
auto bb = factorial();
char group[factorial()]; //编译器在编译时, 就求出来了 NN<factorial()> nn;
nn.print(); return ; }

输出: 6

6. const_cast(避免使用)

7. decltype指定符(c++11)

检查实体的声明类型或表达式的类型及值分类。

#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std; struct A {
double x;
A(double t) : x(t) {} }; void testDecltype()
{
A* a = new A(); auto aa = a->x; // aa : double
decltype(a->x) y; // decltype(a->x) : double
decltype((a->x)) z = y; // decltype((a->x)) : double&
z = 23.5;
cout << y << endl; // 23.5 //其他用法
} //c++11, 后置返回类型, 返回值类型由 后面的表达式确定的
//返回值不损失任何精度
template<typename T, typename U>
auto add(T a, U b) -> decltype(a + b)
{
return a + b;
} template<typename T, typename U>
auto add(T a, U b) {
auto c = a + b;
//return c; //返回值
//return (c); //返回引用
return c;
} int main(int argc, char **argv)
{
testDecltype(); return ;
}

8. dynamic_cast转换

沿继承层级向上、向下及侧向转换到类的指针和引用。

#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std; struct Base
{
virtual ~Base() {}
}; struct Derived : public Base
{
virtual void name() {}
}; void testDynatic_cast()
{
Base *b1 = new Base();
//拥有基类指针, base指针-->derived指针, 失败
if (Derived *d = dynamic_cast<Derived *> (b1))
{
cout << "donwcast from b1 to d successful\n";
d->name(); // safe to call
} Base *b2 = new Derived();
//成功, 因为b2的确指向derived
if (Derived *d = dynamic_cast<Derived *> (b2))
{
cout << "donwcast from b2 to d successful\n";
d->name(); // safe to call
}
} int main(int argc, char **argv)
{ testDynatic_cast(); return ;
}

9. explicit

struct A
{
A(int) { } // 转换构造函数
A(int, int) { } // 转换构造函数 (C++11)
operator bool() const { return true; }
}; struct B
{
explicit B(int) { }
explicit B(int, int) { }
explicit operator bool() const { return true; }
}; int main()
{
A a1 = ; // OK :复制初始化选择 A::A(int)
A a2(); // OK :直接初始化选择 A::A(int)
A a3 {, }; // OK :直接列表初始化选择 A::A(int, int)
A a4 = {, }; // OK :复制列表初始化选择 A::A(int, int)
A a5 = (A); // OK :显式转型进行 static_cast
if (a1) ; // OK :A::operator bool()
bool na1 = a1; // OK :复制初始化选择 A::operator bool()
bool na2 = static_cast<bool>(a1); // OK :static_cast 进行直接初始化 // B b1 = 1; // 错误:复制初始化不考虑 B::B(int)
B b2(); // OK :直接初始化选择 B::B(int)
B b3 {, }; // OK :直接列表初始化选择 B::B(int, int)
// B b4 = {4, 5}; // 错误:复制列表初始化不考虑 B::B(int,int)
B b5 = (B); // OK :显式转型进行 static_cast
if (b2) ; // OK :B::operator bool()
// bool nb1 = b2; // 错误:复制初始化不考虑 B::operator bool()
bool nb2 = static_cast<bool>(b2); // OK :static_cast 进行直接初始化
}

10. static_assert: 编译时检查

#include <iostream>
using namespace std; template<typename T>
void func(T t)
{
static_assert(alignof(T) == , "only for alignof 4");
} int main()
{
int a = ; func(a); return ;
}