bzoj2154(莫比乌斯反演)

时间:2023-03-09 23:56:12
bzoj2154(莫比乌斯反演)

又是一道经典题.

1.学习了下O(n) 的做法。

bzoj2154(莫比乌斯反演)

bzoj2154(莫比乌斯反演)

//
// main.cpp
// bzoj2154
//
// Created by New_Life on 16/7/7.
// Copyright © 2016年 chenhuan001. All rights reserved.
// #include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std; #define N 10001000
#define MOD 20101009 //--莫比乌斯反演函数--//
//说明:利用线性素数筛选顺便求了个mu
//注释部分为求从区间[1,b]和区间[1,d]中取两个数,互质对数O(n^0.5)
//复杂度:O(n)
int mu[N];
long long sum[N];
int prime[N];
bool mark[N]; void mobus()
{
int pcnt=;
memset(mark,,sizeof(mark));
mu[] = ;
for(int i=;i<N;i++)
{
if(mark[i] == )
{
prime[pcnt++] = i;
mu[i] = -;
}
for(int j=;j<pcnt && i*prime[j]<N;j++)
{
int tmp = i*prime[j];
mark[tmp] = ;
if( i%prime[j] == )
{
mu[tmp] = ;
break;
} mu[tmp] = mu[i]*-;
}
}
for(int i=;i<N;i++)
{
sum[i] += sum[i-]+(long long)mu[i]*i*i;
sum[i] %= MOD;
}
} long long gaobili(long long b,long long d)
{
if(b<=||d<=) return ;
long long m = min(b,d);
long long ans = ;
while(m>=)
{
long long tb = b/( b/m + )+;
long long td = d/( d/m + )+;
//前进的最大位置
long long tm = max(tb,td);
ans += (sum[m]-sum[tm-])*(((b/m+)*(b/m)/)%MOD)%MOD*(((d/m+)*(d/m)/)%MOD)%MOD ;
ans %= MOD;
m = tm-;
}
return ans;
}
//等差数列求和模板,[a1,a1+d,...,an]
long long allsum(long long a1,long long an,long long n)
{
if(n%==)
return (a1+an)*(n/);
else return ((a1+an)/)*n;
} int main(int argc, const char * argv[]) {
mobus();
int b,d;
while(scanf("%d%d",&b,&d)!=EOF)
{
int m = min(b,d);
long long ans = ;
while(m>=)
{
int tb = b/( b/m + )+;
int td = d/( d/m + )+;
//前进的最大位置
int tm = max(tb,td);
ans += allsum(tm,m,m-tm+)%MOD*gaobili(b/m, d/m)%MOD;
ans %= MOD;
m = tm-;
}
cout<<(ans+MOD)%MOD<<endl;
}
return ;
}
/*
4 5 */

2.O(n)预处理,每次查询n^0.5

因为bzoj2693题目找不到了,所以直接用了这题来测试。

这题首先是一个经典的公式变形。 交换连加时变量的位置。

bzoj2154(莫比乌斯反演)

而根据第二个重要的性质,乘性函数的乘除之后还是乘性函数。(加减并不是)

所以后面的连加部分也是乘性函数,这时只需要的单独看只含一个因子的时候,因为里面含有u(i),所以对于D=x^k(x是素因子)只有当i = 1 或 x 时不为0,所以

后面的为x^k(1-x)。这时可以在线性筛选时顺便求出来。

**************************************************************
Problem:
User: chenhuan001
Language: C++
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
using namespace std;
//--莫比乌斯反演函数--//
//说明:利用线性素数筛选顺便求了个mu
//注释部分为求从区间[1,b]和区间[1,d]中取两个数,互质对数O(n^0.5)
//复杂度:O(n)
#define N 10000010
bool mark[N];
int prime[N/]; long long sum[N]; #define MOD 20101009 void mobus()
{
int pcnt=; sum[] = ;
for(int i=;i<N;i++)
{
if(mark[i] == )
{
prime[pcnt++] = i; sum[i] = (long long)i*(-i)%MOD;
}
for(int j=;j<pcnt && i*prime[j]<N;j++)
{
int tmp = i*prime[j];
mark[tmp] = ;
if( i%prime[j] == )
{
sum[tmp] = sum[i]*prime[j];
sum[tmp] %= MOD; break;
}
else
{
sum[tmp] = sum[i]*(sum[prime[j]])%MOD;
} }
}
for(int i=;i<N;i++)
sum[i] = (sum[i]+sum[i-])%MOD;
} long long gaobili(int b,int d)
{
if(b<=||d<=) return ;
long long m = min(b,d);
long long ans = ;
while(m>=)
{
long long tb = b/( b/m + )+;
long long td = d/( d/m + )+;
//前进的最大位置
long long tm = max(tb,td);
ans += (sum[m]-sum[tm-])*(((b/m+)*(b/m)/)%MOD)%MOD*(((d/m+)*(d/m)/)%MOD)%MOD;
ans %= MOD;
m = tm-;
}
return (ans+MOD)%MOD;
} int main()
{
mobus();
int b,d;
while(scanf("%d%d",&b,&d)!=EOF)
{
printf("%d\n",(int)gaobili(b,d));
}
return ;
}

至此mobus大概都刷了一遍,原以为很复杂的东西,其实也不是很难。以后面对的题目可能有更多的公式变形,或许难在找出莫比乌斯模型。但基本的也就是这些方法了。

治好了多年的公式恐惧症。。