hdu-3046-Pleasant sheep and big big wolf(最大流最小割)

时间:2023-03-09 10:03:35
hdu-3046-Pleasant sheep and big big wolf(最大流最小割)

题意:

给出最少栏杆数使狼和羊分离

分析:

将狼与源点连,羊与汇点连,容量都为无穷,将图的各个相邻点连接,容量为1

然后题目就转化成最小去掉多少条边使不连通,即求最小割最大流.

// File Name: 3046.cpp
// Author: Zlbing
// Created Time: 2013/9/10 20:41:04 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
const int MAXN=*+;
struct Edge{
int from,to,cap,flow;
};
bool cmp(const Edge& a,const Edge& b){
return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct Dinic{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[MAXN];
bool vis[MAXN];
int d[MAXN];
int cur[MAXN];
void init(int n){
this->n=n;
for(int i=;i<=n;i++)G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap){
edges.push_back((Edge){from,to,cap,});
edges.push_back((Edge){to,from,cap,});//当是无向图时,反向边容量也是cap,有向边时,反向边容量是0
m=edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BFS(){
CL(vis,);
queue<int> Q;
Q.push(s);
d[s]=;
vis[s]=;
while(!Q.empty()){
int x=Q.front();
Q.pop();
for(int i=;i<G[x].size();i++){
Edge& e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a){
if(x==t||a==)return a;
int flow=,f;
for(int& i=cur[x];i<G[x].size();i++){
Edge& e=edges[G[x][i]];
if(d[x]+==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[G[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==)break;
}
}
return flow;
}
//当所求流量大于need时就退出,降低时间
int Maxflow(int s,int t,int need){
this->s=s;this->t=t;
int flow=;
while(BFS()){
CL(cur,);
flow+=DFS(s,INF);
if(flow>need)return flow;
}
return flow;
}
//最小割割边
vector<int> Mincut(){
BFS();
vector<int> ans;
for(int i=;i<edges.size();i++){
Edge& e=edges[i];
if(vis[e.from]&&!vis[e.to]&&e.cap>)ans.push_back(i);
}
return ans;
}
void Reduce(){
for(int i = ; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
}
void ClearFlow(){
for(int i = ; i < edges.size(); i++) edges[i].flow = ;
}
};
Dinic solver;
int main()
{
int n,m;
int cas=;
while(~scanf("%d%d",&n,&m))
{
int s=n*m;
int t=n*m+;
int N=n*m+;
solver.init(N);
int a;
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
scanf("%d",&a);
if(i!=)
solver.AddEdge((i-)*m+j,i*m+j,);
if(j!=)
solver.AddEdge(i*m+j-,i*m+j,);
if(a==)
solver.AddEdge(s,i*m+j,INF);
if(a==)
solver.AddEdge(i*m+j,t,INF);
}
}
int ans=solver.Maxflow(s,t,INF);
printf("Case %d:\n",++cas);
printf("%d\n",ans);
}
return ;
}