Given an array A
of positive integers, A[i]
represents the value of the i
-th sightseeing spot, and two sightseeing spots i
and j
have distance j - i
between them.
The score of a pair (i < j
) of sightseeing spots is (A[i] + A[j] + i - j)
: the sum of the values of the sightseeing spots, minus the distance between them.
Return the maximum score of a pair of sightseeing spots.
Example 1:
Input: [8,1,5,2,6]
Output: 11
Explanation: i = 0, j = 2,A[i] + A[j] + i - j = 8 + 5 + 0 - 2 = 11
Note:
2 <= A.length <= 50000
1 <= A[i] <= 1000
Idea 1. max(A[i] + A[j] + i -j) (i < j) = max(max(A[i] + i) + A[j] -j), scan from left to right
Time complexity: O(n)
Space complexity: O(1)
class Solution {
public int maxScoreSightseeingPair(int[] A) {
int maxScore = Integer.MIN_VALUE;
int sumVal = Integer.MIN_VALUE;
for(int i = 1; i < A.length; ++i) {
sumVal = Math.max(sumVal, A[i-1] + (i-1));
maxScore = Math.max(maxScore, A[i] - i + sumVal);
} return maxScore;
}
}
Idea 1.b scan from right to left, max(A[i] + A[j] + i -j) (i < j) = max(max(A[j] -j) + A[i] + i)
class Solution {
public int maxScoreSightseeingPair(int[] A) {
int maxScore = Integer.MIN_VALUE;
int sumVal = Integer.MIN_VALUE;
for(int i = A.length-2; i >= 0; --i) {
sumVal = Math.max(sumVal, A[i+1] - (i+1));
maxScore = Math.max(maxScore, A[i] + i + sumVal);
} return maxScore;
}
}