拉格朗日乘数法 和 KTT条件

时间:2022-09-22 14:02:17

预备知识

令 \(X\) 表示一个变量组(向量) \((x_1, x_2, \cdots, x_n)\)
考虑一个处处可导的函数 \(f(X)\), 为了方便描述, 这里以二元函数为例
对于微分, 考虑在初始点处固定x移动y产生的变化量, 是和先将x移动dx,然后固定x移动y产生的变化量是相等的
那么有全微分公式 \(df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\)
定义 \(\nabla f(x, y)\) 为点 \((x, y)\) 上的梯度方向向量(平面上的这些向量构成一个向量场)
梯度方向向量指向让\(df\)最大的方向. 也即使 \((\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})\cdot(dx, dy)\) 最大的 \((dx, dy)\)
要投影最长, 同向自然最优, 因此偏导组成的向量\((\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})\)就是梯度方向向量
同理考虑 \(df=0\) 的方向(等高线), 投影为0, 这说明等高线的方向与梯度的方向垂直
高维的情况同理

拉格朗日乘数法

考虑这么一个问题:
\(~~\max f(X)\)
\(s.t.~~g_k(X) = 0, \forall k \in [1,m]\)

考虑 \(f(X)\) 在什么时候取得局部极大值:
考虑往某个方向微移, 若满足这样移动不影响任何一个 \(dg\), 那么必须要有 \(df=0\)
否则如果存在 \(df\neq 0\) , 必然 \(<0, >0\) 都会出现 (考虑反向微移), 就不是局部极值点了
考虑把 \(dx_1, dx_2,\cdots dx_n\) 这种东西看作变量
把 \(\nabla g_1, \nabla g_2, \cdots \nabla g_m\) 以及 \(\nabla f\) 都横着放在矩阵里看作若干个方程
之前的条件就等价于: 前 \(m\) 条方程蕴含了最后一条方程
也即 \(\nabla f\) 可以被 \(\nabla g_1\cdots \nabla g_m\) 线性表示

令\(L(X,\Lambda) = f(X) + \sum_{k=1}^m \lambda_k g_k(X)\)
我们只需求解 \(\nabla L(X,\Lambda) = 0\) 即可

这样我们对 \(n\) 个变量分别求偏导即可得到 \(n\) 个方程
加上 \(g\) 的 \(m\) 个方程 (恰好是对\(\lambda\)分别求偏导)
总共 \(n+m\) 个方程.

KKT条件

考虑这么一个问题:
\(~~\max f(X)\)
\(s.t.~~h_k(X)\ge 0, \forall k \in [1, m]\)

令 \(L(X, \Lambda) = f(x) + \sum_{k=1}^m \lambda_k h_k(X), \lambda_k \ge 0\)

因为\(\lambda\ge 0, h\ge 0\), 所以 \(f(X) = \min_{\Lambda\ge 0} L(X,\Lambda)\)
原问题等价于 \(\max_X \min_{\Lambda\ge 0} L(X,\Lambda)\)

考虑对偶问题 \(\min_{\Lambda\ge 0}\max_X L(X, \Lambda)\)
显然\(L(X, \Lambda)\ge f(X)\), 则有 \(\max_X L(X, \Lambda) \ge \max f(X)\)
对偶问题对所有的这些值取 \(\min\), 仍然是 \(\ge \max f(X)\)

设原问题极值点在 \(X^{*}\), 对偶问题极值点在 \(\Lambda^{*}\)
则有 \(\max_X L(X, \Lambda^{*}) \ge f(X^{*}) + \sum_{k=1}^m \lambda^{*}_k h_k(X) \ge f(X^{*})\)
假设强对偶性满足, 上面的不等号都要变成等号
限制了 : \(\lambda^{*}_k h_k(X) = 0\) 以及 \(\nabla L(X^{*}, \Lambda^{*})=0\)

结论好记: KTT条件只比拉格朗日乘数多了两个限制, \(\lambda_k h_k(X) = 0, \lambda_k\ge 0\)
在哪些问题上满足强对偶性, 详见wiki
自己姿势水平不够, 这个坑可能不那么快能填上了

另外, 考虑如果在原问题加上等式限制, 就再补上拉格朗日乘数即可, 不难发现, 不影响这里的证明

拉格朗日乘数法 和 KTT条件的更多相关文章

  1. &lbrack;Math &amp&semi; Algorithm&rsqb; 拉格朗日乘数法

    拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...

  2. 《University Calculus》-chaper12-多元函数-拉格朗日乘数法

    求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...

  3. CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)

    [传送门]http://codeforces.com/problemset/problem/813/C [题意]给定整数a,b,c,s,求使得  xa yb zc值最大的实数 x,y,z , 其中x ...

  4. bzoj2876 &lbrack;NOI2012&rsqb;骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  5. ML(附录4)——拉格朗日乘数法

    基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将 ...

  6. CodeChef TWOROADS(计算几何&plus;拉格朗日乘数法)

    题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...

  7. BZOJ3775&colon; 点和直线(计算几何&plus;拉格朗日乘数法)

    题面 传送门 题解 劲啊-- 没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没 ...

  8. BZOJ2876 &lbrack;Noi2012&rsqb;骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  9. Wannafly模拟赛2 B river(拉格朗日乘数法)

    题目 https://www.nowcoder.com/acm/contest/4/B题意 有n条南北流向的河并列排着,水流速度是v,现在你需要从西岸游到东岸,总共T个时间,你的游泳速度是u,问东岸的 ...

随机推荐

  1. a&ast; products

    Experience of black-box testing on set-top-boxes/IP-connected devices, games consoles and tablets ht ...

  2. Wormholes&lpar;SPFA&plus;Bellman&rpar;

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36860   Accepted: 13505 Descr ...

  3. 简单而强大的bitset

    简单而强大的bitset 介绍 有些程序需要处理二进制有序集,标准库提供了bitset 类型,事实上,bitset 是一个二进制容器,容器中每一个元素都是一位二进制码,或为 0,或为 1. 基础 bi ...

  4. Selenium Edge Driver Python 自动化测试

    Finally I got it. 没有自动化过edge,今天被小坑了一下,但是还好现在弄好了. 1. 查看edge 版本,我的是14.14393 2. https://developer.micro ...

  5. HTML&amp&semi;javaSkcript&amp&semi;CSS&amp&semi;jQuery&amp&semi;ajax(五)

    一.Framset标签定义了每个框架中的HTML文档, 1. <framset cols="25%,75%"> <frame src="frame_a. ...

  6. bat获取文件夹里面所有文件夹的名称方法

    创建一个123.txt文档,修改名称为123.bat 里面填写内容如下: DIR *.*  /B >文件名清单.TXT 保存,双击执行即可获取生成文件夹名称的txt文档

  7. asp&period;net core 2&period;0 api ajax跨域问题

    API配置: services.AddCors(options => { options.AddPolicy("any", builder => { builder.W ...

  8. 我发起了一个 &period;Net 平台上的 NewSql 数据库 BabanaDB

    发起这个项目的起因, 是偶然看到一个网友发的 MongoDB 的 新闻, 我想, 像  MongoDB  这样的 非关系数据库 ,随时 都可以写 很多个, 真正 难写 的 是  关系数据库, 非关系数 ...

  9. windows live writer首行缩进问题的解决

    使用live writer写博客的确方便,但有个简单的问题,我始终无法解决,就是发布的博客老是无法首行缩进,试过好多方法,都有问题: 直接加全角空格.上传时就给过滤掉了. 修改defaultcss,结 ...

  10. ObjectHeader、ObjectType和ObjectHook的学习

    0x01 前言 之前研究RootKit技术,发现了对象钩子这个概念,一直不知道是什么,然后在网上搜,最先找到的是sudami的一篇文章,于是跟着大牛的脚步研究,其中也参考<内核情景分析>, ...