hdu2588 GCD (欧拉函数)

时间:2023-03-09 00:05:35
hdu2588 GCD (欧拉函数)

GCD

题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数。  (文末有题)

知识点:   欧拉函数。http://www.cnblogs.com/shentr/p/5317442.html

题解一:

当M==1时,显然答案为N。

当M!=1。  X是N的因子的倍数是 gcd(X,N)>1 && X<=N 的充要条件。so  先把N素因子分解,

N=hdu2588 GCD (欧拉函数)          (e1,e2,…en 从0~ei的全排列包含了所有N的因子。)(可能表达不清,看下面。。)

()中内容相当于:

for(int i=0;i<e1;i++)

for(int j=0;j<e2;j++)

for(int k=0;k<en;k++)

x=p1^i*p2^j…pn^k

用dfs解决这个问题,得到所有N的因子。

假设N=p*d,X=q*d.若n与x的最大公约数为d,则能够推出p与q肯定是互质的,因为X<=N所以要求的就是p的欧拉函数值了,那么我们就转化成求满足:N=p*d,并且d>=N的p的欧拉函数值之和了。

如果dfs不是用的很溜的看解法二。

//解法1:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1e5; bool vis[N];
int prime[N],cnt;
void is_prime()
{
cnt=0;
memset(vis,0,sizeof(vis));
for(int i=2; i<N; i++)
{
if(!vis[i])
{
prime[cnt++]=i;
for(int j=i+i; j<N; j+=i)
vis[j]=1;
}
}
} int e[100],p[100],cnt2=0;
void fenjie(int n)
{
cnt2=0;
memset(e,0,sizeof(e));
for(int i=0; i<cnt&&prime[i]<=n; i++)
{
if(n%prime[i]==0)
{
p[cnt2]=prime[i];
e[cnt2]++;
n/=prime[i];
while(n%prime[i]==0)
{
n/=prime[i];
e[cnt2]++;
}
cnt2++;
}
}
} int Euler(int n)
{
int ans=n;
for(int i=0; i<cnt&&prime[i]<=n; i++)
{
if(n%prime[i]==0)
{
ans=ans-ans/prime[i];
while(n%prime[i]==0)
n/=prime[i];
}
}
if(n==1)
return ans;
if(n>1)
return ans-ans/n; } LL dfsans[N],cnt3=0;
void dfs(int cur,LL x)
{
if(cur==cnt2)
{
dfsans[cnt3++]=x;
return;
}
for(int i=0;i<=e[cur];i++)
{
LL ans=1;
for(int j=0;j<i;j++)
ans*=p[cur];
dfs(cur+1,x*ans);
}
} int main()
{
int t;
cin>>t;
is_prime();
while(t--)
{
LL n,m;
cin>>n>>m;
fenjie(n);
LL ans=0; cnt3=0;
dfs(0,1);
for(int i=0;i<cnt3;i++)
{
//cout<<dfsans[i]<<endl;
if(dfsans[i]>=m)
ans+=Euler(n/dfsans[i]);
}
cout<<ans<<endl;
}
}

题解二:

只是把dfs换了,其他思路和上面一样。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1e5; bool vis[N];
int prime[N],cnt;
void is_prime()
{
cnt=0;
memset(vis,0,sizeof(vis));
for(int i=2;i<N;i++)
{
if(!vis[i])
{
prime[cnt++]=i;
for(int j=i+i;j<N;j+=i)
vis[j]=1;
}
}
} int e[100],p[100],cnt2=0;
void fenjie(int n)
{
cnt2=0;
memset(e,0,sizeof(e));
for(int i=0;i<cnt&&prime[i]<=n;i++)
{
if(n%prime[i]==0)
{
p[cnt2]=prime[i];
e[cnt2]++;
n/=prime[i];
while(n%prime[i]==0)
{
n/=prime[i];
e[cnt2]++;
}
cnt2++;
}
}
} int Euler(int n)
{
int ans=n;
for(int i=0;i<cnt&&prime[i]<=n;i++)
{
if(n%prime[i]==0)
{
ans=ans-ans/prime[i];
while(n%prime[i]==0)
n/=prime[i];
}
}
if(n==1)
return ans;
if(n>1)
return ans-ans/n; } /*LL dfsans[N],cnt3=0;
void dfs(int cur,LL x){ if(cur==cnt2) { dfsans[cnt3++]=x; return; } for(int i=0;i<=e[cur];i++) { LL ans=1; for(int j=0;j<i;j++) ans*=p[cur]; dfs(cur+1,x*ans); } } */ int main()
{
int t;
cin>>t;
is_prime();
while(t--)
{
LL n,m;
cin>>n>>m;
fenjie(n);
LL ans=0;
/*for(int i=0;i<N;i++)
dfsans[i]=1;
cnt3=0;
dfs(0);
for(int i=0;i<cnt3;i++)
{
cout<<dfsans[i]<<endl;
if(dfsans[i]>=m)
ans+=Euler(n/dfsans[i]);
}*/
for(int i=1;i*i<=n;i++)
{
if(n%i==0)
{
if(i>=m)
ans+=Euler(n/i);
if((n/i!=i)&&(n/i>=m))
ans+=Euler(i);
}
}
cout<<ans<<endl;
}
}

GCD

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.

Input

The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.

Output

For each test case,output the answer on a single line.

Sample Input


3
1 1
10 2
10000 72

Sample Output


1
6
260