第十三章 ThreadPoolExecutor源码解析

时间:2023-03-09 09:12:05
第十三章 ThreadPoolExecutor源码解析

ThreadPoolExecutor使用方式、工作机理以及参数的详细介绍,请参照《第十二章 ThreadPoolExecutor使用与工作机理 》

1、源代码主要掌握两个部分

  • 线程池的创建:构造器
  • 提交任务到线程池去执行:execute()

2、构造器

2.1、一些属性:

    /**
* runState provides the main lifecyle control, taking on values:
*
* RUNNING -> SHUTDOWN
* On invocation of shutdown(), perhaps implicitly in finalize()
* (RUNNING or SHUTDOWN) -> STOP
* On invocation of shutdownNow()
* SHUTDOWN -> TERMINATED
* When both queue and pool are empty
* STOP -> TERMINATED
* When pool is empty
*/
volatile int runState;
static final int RUNNING = 0;//接收新的任务,会处理队列中的任务
static final int SHUTDOWN = 1;//不接收新的任务,但是会处理队列中的任务
static final int STOP = 2;//不接收新的任务,也不会处理队列中的任务,而且还会中断正在执行的任务
static final int TERMINATED = 3;//STOP+中止所有线程 private final BlockingQueue<Runnable> workQueue;//队列 /**
* 对poolSize, corePoolSize, maximumPoolSize, runState, and workers set上锁
*/
private final ReentrantLock mainLock = new ReentrantLock(); /**
* 支持awaitTermination的等待条件
*/
private final Condition termination = mainLock.newCondition(); /**
* pool中的所有工作线程集合;仅仅在持有mainLock的时候才允许被访问
*/
private final HashSet<Worker> workers = new HashSet<Worker>(); private volatile long keepAliveTime; /**
* false(默认):当核心线程处于闲置状态时,也会存活
* true:核心线程使用keepAliveTime来决定自己的存活状态
*/
private volatile boolean allowCoreThreadTimeOut; /**
* Core pool size,仅仅在持有mainLock的时候才允许被更新,
* 因为是volatile允许并发读(即使是在更新的过程中)
*/
private volatile int corePoolSize; /**
* Maximum pool size, 其他同上
*/
private volatile int maximumPoolSize; /**
* Current pool size, 其他同上
*/
private volatile int poolSize; /**
* 回绝处理器
*/
private volatile RejectedExecutionHandler handler; /**
* 所有的线程都通过这个线程工厂的addThread方法来创建。
*/
private volatile ThreadFactory threadFactory; /**
* Tracks largest attained pool size.
*/
private int largestPoolSize; /**
* 已经完成的任务数.仅仅在工作线程被终结的时候这个数字才会被更新
*/
private long completedTaskCount; /**
* 默认的回绝处理器(回绝任务并抛出异常)
*/
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();

说明:因为属性不多,这里列出了全部属性。

2.2、构造器:

    public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
} public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
threadFactory, defaultHandler);
} public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), handler);
} public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
/*
* 检查参数
*/
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
/*
* 初始化值
*/
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);//转成纳秒
this.threadFactory = threadFactory;
this.handler = handler;
}

说明:4个构造器(1个5参+2个6参+1个7参)

注意:默认情况下,构造器只会初始化参数,不会提前构建好线程

建议:构造器参数众多,建议使用构建器模式,关于构建器模式的实际使用范例,请参照《第二章 Google guava cache源码解析1--构建缓存器

构造器中默认线程工厂的创建:Executors中的方法

    public static ThreadFactory defaultThreadFactory() {
return new DefaultThreadFactory();
} /**
* 默认的线程工厂
*/
static class DefaultThreadFactory implements ThreadFactory {
static final AtomicInteger poolNumber = new AtomicInteger(1);//池数量
final ThreadGroup group;//线程组
final AtomicInteger threadNumber = new AtomicInteger(1);//线程数量
final String namePrefix; /*
* 创建默认的线程工厂
*/
DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null)? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
} /*
* 创建一个新的线程
*/
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),//新线程的名字
0);
/*
* 将后台线程设置为应用线程
*/
if (t.isDaemon())
t.setDaemon(false);
/*
* 将线程的优先级全部设置为NORM_PRIORITY
*/
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
}

说明,其中的newThread()方法会在第三部分用到。

3、提交任务的线程池去执行execute(Runnable command)

    public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/**
* 这一块儿就是整个工作机理的部分(代码比较精致)
* 1、addIfUnderCorePoolSize
* 1)如果当前线程数poolSize<核心线程数corePoolSize并且pool的状态为RUNNING,
* 1.1)先获取锁
* 1.2)根据传入的任务firstTask创建一个Work对象,在该对象中编写了run()方法,在该run()方法中会真正的去执行firstTask的run()
* 说明:关于Work对象run部分的内容,查看Work内部类的run()方法上边的注释以及与其相关方法的注释
* 1.3)通过线程工厂与上边创建出来的work对象w创建新的线程t,将w加入工作线程集合,
* 然后启动线程t,之后就会自动执行w中的run(),w中的run()又会调用firstTask的run(),即处理真正的业务逻辑
*
* 2、如果poolSize>=corePoolSize或者上边的执行失败了
* 1)如果pool的状态处于RUNNING,将该任务入队(offer(command))
* 如果入队后,pool的状态不是RUNNING了或者池中的线程数为0了,下边的逻辑具体去查看注释
* 2)addIfUnderMaximumPoolSize(同addIfUnderCorePoolSize)
* 如果增加线程也不成功,则回绝任务。
*
*/
if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
if (runState == RUNNING && workQueue.offer(command)) {
if (runState != RUNNING || poolSize == 0)
ensureQueuedTaskHandled(command);
}
else if (!addIfUnderMaximumPoolSize(command))
reject(command); // is shutdown or saturated
}
}

3.1、addIfUnderCorePoolSize(Runnable firstTask)

    /**
* 创建并且启动一个新的线程来处理任务
* 1、其第一个任务就是传入的firstTask参数
* 2、该方法仅仅用于当前线程数小于核心线程数并且pool没有被关掉的时候
*/
private boolean addIfUnderCorePoolSize(Runnable firstTask) {
Thread t = null;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();//获取锁
try {
if (poolSize < corePoolSize && runState == RUNNING)
t = addThread(firstTask);//创建新线程
} finally {
mainLock.unlock();//释放锁
}
return t != null;
}

addThread(Runnable firstTask)

    private Thread addThread(Runnable firstTask) {
Worker w = new Worker(firstTask);//构造一个work
Thread t = threadFactory.newThread(w);//创建线程
boolean workerStarted = false;
if (t != null) {//
if (t.isAlive()) //如果t线程已经启动了,而且还没有死亡
throw new IllegalThreadStateException();
w.thread = t;
workers.add(w);//将w工作线程加入workers线程池
int nt = ++poolSize;//当前的池数量+1
if (nt > largestPoolSize)
largestPoolSize = nt;
try {
t.start();//启动线程
workerStarted = true;
}
finally {
if (!workerStarted)//启动线程没有成功
workers.remove(w);//将w从workers集合中删除
}
}
return t;
}

newThread(Runnable r)

该方法在构建上边的默认线程工厂部分已经说过了。

Work内部类:

/**
* 工作线程。
*/
private final class Worker implements Runnable {
/**
* 在每一个任务的执行前后都会获取和释放runLock。
* 该锁只要是为了防止中断正在执行任务的work线程
*/
private final ReentrantLock runLock = new ReentrantLock(); /**
* Initial task to run before entering run loop.
* 1、Possibly null.
*/
private Runnable firstTask; /**
* 每个work线程完成的任务总量
* accumulated into completedTaskCount upon termination.
*/
volatile long completedTasks; Thread thread; /**
* 该work中的线程是不是确实正在执行了run()
*/
volatile boolean hasRun = false; Worker(Runnable firstTask) {
this.firstTask = firstTask;
} /*
* true:已经有线程持有了该锁
*/
boolean isActive() {
return runLock.isLocked();
} private void runTask(Runnable task) {
final ReentrantLock runLock = this.runLock;
runLock.lock();//获取锁runLock
try {
/*
* 如果pool状态为STOP或TERMINATED,确保线程被打断;
* 如果不是,确保线程不要被打断
*/
if ((runState >= STOP ||
(Thread.interrupted() && runState >= STOP)) &&
hasRun)
thread.interrupt();
/*
* 确保afterExecute会被执行仅仅当任务完成了(try)或抛出了异常(catch)
*/
boolean ran = false;
beforeExecute(thread, task);//执行任务的run()方法之前要执行的操作
try {
task.run();//执行线程的run()方法
ran = true;
afterExecute(task, null);//执行任务的run()方法之后要执行的操作
++completedTasks;
} catch (RuntimeException ex) {
if (!ran)
afterExecute(task, ex);
throw ex;
}
} finally {
runLock.unlock();//释放锁runLock
}
} /**
* Main run loop
* 运行当前任务task,运行结束后,尝试获取队列中的其他任务,
* 如果最后通过各种方式都获取不到,就回收该线程,如果获取到了,就用该线程继续执行接下来的任务
* 最后,当获取不到任何任务去执行时,就将该线程从works线程集合中删除掉
*/
public void run() {
try {
hasRun = true;
Runnable task = firstTask;
firstTask = null;
while (task != null || (task = getTask()) != null) {
runTask(task);//运行该任务
task = null;
}
} finally {
workerDone(this);//将该线程从works集合中删除
}
}
}

说明:这里列出了该内部类的全部属性和常用方法。

getTask()

    /**
* 获取下一个worker线程将要运行的任务
* Gets the next task for a worker thread to run.
*/
Runnable getTask() {
for (;;) {//无限循环
try {
int state = runState;
if (state > SHUTDOWN)
return null;
Runnable r;
if (state == SHUTDOWN) // Help drain queue
r = workQueue.poll();//处理queue中的任务
//下面的runState==RUNNING
else if (poolSize > corePoolSize || allowCoreThreadTimeOut)
//从队头获取任务,如果没有任务,等待keepAliveTime的时间
r = workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS);
else
//从队头获取任务,如果没有任务,阻塞等待
r = workQueue.take();
if (r != null)
return r;
if (workerCanExit()) {//允许回收获取任务失败的线程
if (runState >= SHUTDOWN) // Wake up others
interruptIdleWorkers();//中断闲置的work线程
return null;
}
// Else retry
} catch (InterruptedException ie) {
// On interruption, re-check runState
}
}
}

workerCanExit()

    /**
* 检测一个获取任务失败的work线程是否可以退出了。
* 出现下面三种情况,work线程就会死亡。
* 1、如果pool的状态为STOP或TERMINATED
* 2、队列为空
* 3、允许回收核心线程并且池中的线程数大于1和corePoolSize的最大值
*/
private boolean workerCanExit() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
boolean canExit;
try {
canExit = runState >= STOP ||
workQueue.isEmpty() ||
(allowCoreThreadTimeOut &&
poolSize > Math.max(1, corePoolSize));
} finally {
mainLock.unlock();
}
return canExit;
}

workerDone(Worker w)

    void workerDone(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
workers.remove(w);//从workers集合中删除该线程
if (--poolSize == 0)//如果池中的线程数为0
tryTerminate();
} finally {
mainLock.unlock();
}
}

3.2、ensureQueuedTaskHandled(Runnable command)

    /**
* 在一个task入队之后重新检查state。
* 当一个task入队后,pool的state发生了变化,该方法就会被调用。
* 如果一个task入队的同时,shutdownNow方法发生了调用,该方法就必须从队列中移除并回绝
* 否则该方法会保证至少有一个线程来处理入队的task
*/
private void ensureQueuedTaskHandled(Runnable command) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
boolean reject = false;
Thread t = null;
try {
int state = runState;
if (state != RUNNING && workQueue.remove(command))
reject = true;
else if (state < STOP &&
poolSize < Math.max(corePoolSize, 1) &&
!workQueue.isEmpty())
t = addThread(null);
} finally {
mainLock.unlock();
}
if (reject)
reject(command);
}

3.3、addIfUnderMaximumPoolSize(Runnable firstTask)

    private boolean addIfUnderMaximumPoolSize(Runnable firstTask) {
Thread t = null;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (poolSize < maximumPoolSize && runState == RUNNING)
t = addThread(firstTask);
} finally {
mainLock.unlock();
}
return t != null;
}

说明:该方法的其他方法与addIfUnderCorePoolSize(Runnable firstTask)一样。

3.4、reject(Runnable command)

    void reject(Runnable command) {
handler.rejectedExecution(command, this);
}
    public static class AbortPolicy implements RejectedExecutionHandler {

        public AbortPolicy() { }
/** 直接抛异常 */
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException();
}
}

说明:明白了上一章将的线程池机理,按着这个机理去看源代码是非常容易的事情。

总结:

  • 上一章的工作机理
  • 上一章的参数详细说明