题意:给定 n 个由0~m-1的整数组成的序列,输入 k ,问你找出连续的最短序列,使得这个序列含有1-k的所有整数。
析:这个题,很简单么,只要从头开始扫一遍就OK,时间复杂度为O(n)。
代码如下:
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
using namespace std ;
typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-8;
const int maxn = 1e6 + 5;
const int dr[] = {0, 0, -1, 1};
const int dc[] = {-1, 1, 0, 0};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int a[maxn];
int vis[1005];
void init(){
a[0] = 1; a[1] = 2; a[2] = 3;
for(int i = 3 ; i < n; ++i)
a[i] = (a[i-1]+a[i-2]+a[i-3]) % m + 1;
} int main(){
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
int k;
scanf("%d %d %d", &n, &m, &k);
init();
int ans = INF;
int s = 0, e = 0;
memset(vis, 0, sizeof(vis));
int cnt = 0;
while(e < n){
while(e < n && cnt < k){
if(!vis[a[e]] && a[e] <= k) ++cnt;
++vis[a[e]];
++e;
}
if(cnt == k) ans = min(ans, e-s);
--vis[a[s]];
if(!vis[a[s]] && a[s] <= k) --cnt;
++s;
}
printf("Case %d: ", kase);
ans == INF ? printf("sequence nai\n") : printf("%d\n", ans);
}
return 0;
}