qwe框架- CNN 实现

时间:2023-03-09 19:12:24
qwe框架- CNN 实现

CNN实现

概述

我在qwe中有两种,第一种是按照Ng课程中的写法,多层循环嵌套得到每次的“小方格”,然后WX+b,这样的做法是最简单,直观。但是效率极其慢。基本跑个10张以内图片都会卡的要死。

第二种方法是使用img2col,将其转换为对应的矩阵,然后直接做一次矩阵乘法运算。

先看第一种

def forward(self, X):
m, n_H_prev, n_W_prev, n_C_prev = X.shape
(f, f, n_C_prev, n_C) = self.W.shape
n_H = int((n_H_prev - f + 2 * self.pad) / self.stride) + 1
n_W = int((n_W_prev - f + 2 * self.pad) / self.stride) + 1
n_H, n_W, n_C = self.output_size Z = np.zeros((m, n_H, n_W, n_C))
X_pad = zero_pad(X, self.pad)
for i in range(m):
for h in range(n_H):
for w in range(n_W):
for c in range(n_C):
vert_start = h * self.stride
vert_end = vert_start + f
horiz_start = w * self.stride
horiz_end = horiz_start + f
A_slice_prev =X_pad[i,vert_start:vert_end, horiz_start:horiz_end, :]
Z[i,h,w,c] = conv_single_step(A_slice_prev, self.W[...,c], self.b[...,c]) def conv_single_step(X, W, b):
# 对一个裁剪图像进行卷积
# X.shape = f, f, prev_channel_size
return np.sum(np.multiply(X, W) + b)

对于m,n_H,n_W,n_C循环就是取得裁剪小方块,可以看到这里的计算复杂度m * n_H * n_W * n_C * (f*f的矩阵计算)

第二种方法,先转换成大矩阵,再进行一次矩阵运算,相当于节省了多次小矩阵运算时间,这还是很可观的,能查个几十倍的速度。

img2col原理很简单,详情可参考caffe im2col

就是循环将每一部分都拉长成一维矩阵拼凑起来。

对于CNN来说,H就是要计算方块的个数即m(样本数) n_H(最终生成图像行数)n_W(最终生成图像列数),W就是f(核kernel长)f(核宽)*(输入样本通道输)

然后还要把参数矩阵W也拉成这个样子,H就是f(核长)f(核宽)(输入样本通道输),W列数就是核数kernel_size

如下图

qwe框架- CNN 实现

qwe框架- CNN 实现

def img2col(X, pad, stride, f):
pass
ff = f * f
m, n_H_prev, n_W_prev, n_C_prev= X.shape
n_H = int((n_H_prev - f + 2 * pad) / stride) + 1
n_W = int((n_W_prev - f + 2 * pad) / stride) + 1
Z = np.zeros((m * n_H * n_W, f * f * n_C_prev))
X_pad = np.pad(X, ((0, 0), (pad, pad), (pad, pad), (0, 0)), 'constant', constant_values=0)
row = -1 for i in range(m):
for h in range(n_H):
for w in range(n_W):
row += 1
vert_start = h * stride
horiz_start = w * stride
for col in range(f * f * n_C_prev):
t = col // n_C_prev
hh = t // f
ww = t % f
cc = col % n_C_prev
Z[row, col] = X_pad[i, vert_start + hh, horiz_start + ww, cc] def speed_forward(model, X):
W = model.W
b = model.b
stride = model.stride
pad = model.pad
(n_C_prev, f, f, n_C) = W.shape
m, n_H_prev, n_W_prev, n_C_prev = X.shape n_H = int((n_H_prev - f + 2 * pad) / stride) + 1
n_W = int((n_W_prev - f + 2 * pad) / stride) + 1 # WW = W.swapaxes(2,1)
# WW = WW.swapaxes(1,0) XX = img2col(X, pad, stride, f)
# WW = WW.reshape(f*f*n_C_prev, n_C)
WW = W.reshape(f*f*n_C_prev, n_C)
model.XX = XX
model.WW = WW Z = np.dot(XX, WW) + b
return Z.reshape(m, n_H, n_W, n_C)

这种耗时操作,最好使用Cython扩展来写,不然速度还是不够理想。Cython扩展代码code

反向传播同理,具体代码参考

github