Attribute操作的性能优化方式

时间:2023-03-09 03:45:54
Attribute操作的性能优化方式

Attribute是.NET平台上提供的一种元编程能力,可以通过标记的方式来修饰各种成员。无论是组件设计,语言之间互通,还是最普通的框架使 用,现在已经都离不开Attribute了。迫于Attribute的功能的重要性(Kent Beck认为NUnit比早期JUnit设计的好,一个主要方面便是利用了Attribute),Java语言也在5.0版本中引入了与 Attribute类似的Annotation概念。不过Attribute说到底也是一种反射操作,平时正常使用不会带来问题,但是密集的调用还是对性 能有一定影响的。这次我们就来总结看看我们究竟可以如何回避Attribute操作的一些性能问题。

源码:http://www.jinhusns.com/Products/Download/?type=xcj

假设我们有一个Attribute,它定义在一个类型上:

01.[AttributeUsage(AttributeTargets.Class,
02.AllowMultiple = true,
03.Inherited = true)]
04.public class TestAttribute : Attribute
05.{
06.public TestAttribute(string prop)
07.{
08.this.Prop = prop;
09.}
10. 
11.public TestAttribute() { }
12. 
13.public string Prop { get; set; }
14.}
15. 
16.[Test("Hello World")]
17.[Test(Prop = "Hello World")]
18.public class SomeClass { }

那么,如果我们需要获得SomeClass类型上所标记的TestAttribute,我们一般会使用Type对象的GetCustomAttributes方法。那么在其中又发生了什么呢?

通过.NET Reflector来追踪其中实现,会发现这些逻辑最终是由CustomAttribute的GetCustomAttributes方法完成的,感兴趣 的朋友们可以找到那个最复杂的重载。由于实现有些复杂,我没有看懂完整的逻辑,但从关键的代码上可以看出,它其实是使用了 Activator.CreateInstance方法创建对象,并且使用反射对Attribute对象的属性进行设置。于是我便打算了解一下这些反射操 作占整个GetCustomAttributes方法的多大比重:

01.CodeTimer.Time("GetCustomAttributes", 1000 * 100, () =>
02.{
03.var attributes = typeof(SomeClass).GetCustomAttributes(typeof(TestAttribute), true);
04.});
05. 
06.CodeTimer.Time("Reflection", 1000 * 100, () =>
07.{
08.var a1 = (TestAttribute)Activator.CreateInstance(typeof(TestAttribute), "Hello World");
09.var a2 = (TestAttribute)Activator.CreateInstance(typeof(TestAttribute));
10.typeof(TestAttribute).GetProperty("Prop").SetValue(a2, "Hello World", null);
11.});

结果如下:

GetCustomAttributes
        Time Elapsed:   2,091ms
        CPU Cycles:     5,032,765,488
        Gen 0:          43
        Gen 1:          0
        Gen 2:          0

Reflection
        Time Elapsed:   527ms
        CPU Cycles:     1,269,399,624
        Gen 0:          40
        Gen 1:          0
        Gen 2:          0

可以看出,虽然GetCustomAttributes方法中使用了反射进行对象的创建和属性设置,但是它的大部分开销还是用于获取一些元数据的,
它们占据了3/4的时间,而反射的开销其实只占了1/4左右。这就有些令人奇怪了,既然是静态的元数据,为什么.NET
Framework不对这些数据进行缓存,而是每次再去取一次呢?即便是我们不应该缓存最后得到的Attribute对象,但是用于构造对象的“信息”是完全可以缓存下来的。

事实上,经由上次heros同学指出,.NET Framework事实上已经给出了足够的信息,那便是CustomAttributeData
GetCustomAttributes方法,它返回的是IList<CustomAttributeData>对象,其中包含了构造
Attribute所需要的全部信息。换句话说,我完全可以根据一个CustomAttributeData来“快速构建”Attribute对象:

01.public class AttributeFactory
02.{
03.public AttributeFactory(CustomAttributeData data)
04.{
05.this.Data = data;
06. 
07.var ctorInvoker = new ConstructorInvoker(data.Constructor);
08.var ctorArgs = data.ConstructorArguments.Select(a => a.Value).ToArray();
09.this.m_attributeCreator = () => ctorInvoker.Invoke(ctorArgs);
10. 
11.this.m_propertySetters = new List<Action<object>>();
12.foreach (var arg in data.NamedArguments)
13.{
14.var property = (PropertyInfo)arg.MemberInfo;
15.var propertyAccessor = new PropertyAccessor(property);
16.var value = arg.TypedValue.Value;
17.this.m_propertySetters.Add(o => propertyAccessor.SetValue(o, value));
18.}
19.}
20. 
21.public CustomAttributeData Data { get; private set; }
22. 
23.private Func<object> m_attributeCreator;
24.private List<Action<object>> m_propertySetters;
25. 
26.public Attribute Create()
27.{
28.var attribute = this.m_attributeCreator();
29. 
30.foreach (var setter in this.m_propertySetters)
31.{
32.setter(attribute);
33.}
34. 
35.return (Attribute)attribute;
36.}
37.}

AttributeFactory利用了FastReflectionLib,将ConstructorInfo和PropertyInfo封装成性能很高的ConstructorInvoker和PropertyAccessor对象,这样使用起来便有数量级的性能提高。我们再来进行一番测试:

var factories = CustomAttributeData.GetCustomAttributes(typeof(SomeClass))
    .Where(d => d.Constructor.DeclaringType == typeof(TestAttribute))
    .Select(d => new AttributeFactory(d)).ToList();

CodeTimer.Time("GetCustomAttributes", 1000 * 100, () =>
{
    var attributes = typeof(SomeClass).GetCustomAttributes(typeof(TestAttribute), true);
});

CodeTimer.Time("AttributeFactory", 1000 * 100, () => factories.ForEach(f => f.Create()));

结果如下:

GetCustomAttributes
        Time Elapsed:   2,131ms
        CPU Cycles:     5,136,848,904
        Gen 0:          43
        Gen 1:          43
        Gen 2:          0

Attribute Factory
        Time Elapsed:   18ms
        CPU Cycles:     44,235,564
        Gen 0:          4
        Gen 1:          4
        Gen 2:          0

在这里,我们先获得SomeClass中所有定义过的CustomAttributeData对象,然后根据其Constructor的类型来判断
哪些是用于构造TestAttribute对象的,然后用它们来构造AttributeFactory。在实际使用过程
中,AttributeFactory实例可以缓存下来,并反复使用。这样的话,我们即可以每次得到新的Attribute对象,又可以避免
GetCustomAttributes方法所带来的莫名其妙的开销。

事实上,我们完全可以利用这个方法,来实现一个性能更高的GetCustomAttributesEx方法,它的行为可以和.NET自带的
GetCustomAttributes完全一致,但是性能可以快上无数——可能是100倍。不过,这个方法虽然不难编写,但比较麻烦。因为
CustomAttributeData只能用于获得“直接定义”在某个成员上的数据,而实际情况是,我们往往还必须根据某个Attribute上标记的
AttributeUsage的AllowMultiple和Inherited属性来决定是否要遍历整个继承链。只有这般,我们才能百分之百地重现
GetCustomAttribute方法的行为。

不过我们在这里有个优势,那便是“静态”。一旦“静态”,我们便可以为某个特定的场景,用“肉眼”判断出特定的处理方式,这样便不需要一个非常通用
的GetCustomAttributeEx方法了。例如在实际使用过程中,我们可以可以发现某个Attribute的Inherited属性为
false,那么我们便可以免去遍历继承链的麻烦。

最后还有两点可能值得一提:

除了Type,Assembly等成员自带的GetCustomAttributes方法之外,Attribute类也有些静态
GetCustomAttributes方法可用于获取Attribute对象。但是,通过.NET
Reflector,我们可以发现,Attribute类中的静态方法,最终还是委托给各自的实例方法,因此不会有性能提高。唯一区别对待的是
ParameterInfo——不过我没搞懂为什么那么复杂,感兴趣的朋友可以自行探索一番。

如果仅仅是判断一个成员是否定义了某个特定类型的Attribute对象,那么可以使用Attribute.IsDefined静态方法。它的性能
比GetCustomAttributes后再判断数组的Length要高效许多倍。不过个人认为这点倒并不是非常重要,因为这原本就是个静态的信息,即
便是我们使用较慢的GetCustomAttributes方法来进行判断,也可以把最终的true或false结果进行缓存,这自然也不会有性能问题
了。

我们之所以要反复调用GetCustomAttributes方法,就是因为每次得到的Attribute对象都是新建的,因此在某些场景下可能无法缓存它们。不过现在已经有了现在更快的做法,在这方面自然也就不会有太大问题了。

相关文章