hdu 4790 Just Random 神奇的容斥原理

时间:2023-03-09 08:33:53
hdu 4790 Just Random  神奇的容斥原理
 /**
大意: 给定[a,b],[c,d] 在这两个区间内分别取一个x,y 使得 (x+y)%p = m
思路:res = f(b,d) -f(b,c-1)-f(a-1,d)+f(a-1,c-1); f(b,d ) 表示在[0,b],[0,d] 之间有多少个符合上述要求的数
1、将[0,b] 分为两部分, b/p 和 b%p 能整除p的[0,(b/p)*p] 和[(b/p)*p+1,b ] 同理[0,d]也可以这样分, 这样对于[0,b] [0,d ] 分别有两种情况,则一共有四种情况。
a、 对于能整除的部分,直接相乘可得结果ans += (b/p)*(d/p)*p;
b、 对于b 不能整除的和 d 能整除的。。 ans += (b%p+1)*(d/p)
c、 对于d不能整除的和b能整除的。 ans += (d%p+1)*(b/p)
d 、 对于 b不能整除和d也不能整除的。。
先举下面一个例子 对于一个完整的区间来说,不难想到[0,m]对应[m,0],那么对于[m+1,p-1]对应哪一个区间呢,一个数a来说,如果a%p=m,则a=m,m+p,m+2*p……由于[0,p-1]中任意两个数的和都小于2*p,因此a只能为m或者m+p,那么[m+1,p-1]就对应着[p-1,m-1]。下面是m=3,p=8的情况
0 1 2 3 4 5 6 7
3 2 1 0 7 6 5 4 那么。。ma = b%p mb = d%p。。。
若是ma〉m 那么:
ans += min(m+1,mb+1);
tmp = (p+m-ma)%p;
if(tmp<=mb) ans += (mb-tmp+1); 若是ma〈 m 那么:
tmp = (m-ma+p)%p;
if(tmp<=mb)
ans += min(m-tmp+1,mb-tmp+1);
**/
////////////////////////////////////////////////
别人的解释。。。
总的组合数很容易算出来,也就是两个区间的整数的个数的乘积。接下来是求两个数的和,对于一个区间,我们可以根据区间模p的结果进行划分:[a%p,p-],[,p-],[,b%p],也就是说把区间中前面和后面不完整的[,p-]的区间单独拿出来分析,中间的完整的一起算就好了。接下来是区间中模p等于m的数的个数,对于一个完整的区间来说,不难想到[,m]对应[m,],那么对于[m+,p-]对应哪一个区间呢,一个数a来说,如果a%p=m,则a=m,m+p,m+*p……由于[,p-]中任意两个数的和都小于2*p,因此a只能为m或者m+p,那么[m+,p-]就对应着[p-,m-]。下面是m=,p=8的情况 这样一个完整的区间中两个数的和对p取模等于m的对应关系就确定了。接下来就是分区间讨论,对于完整的区间可以完全对应,因此是p,对于不完整的区间,算出它对应的区间,然后跟另一个区间比较,看覆盖的长度就行了。这题想到这应该就没问题了,但是写起来还是挺容易错的。
//////////////////////////////////////////////// #include <iostream>
#include <algorithm>
using namespace std;
long long a,b,c,d,p,m; long long min(long long a,long long b){
return a<b?a:b;
} long long sol(long long b,long long d){
if(b<||d<)
return ;
long long ma,mb;
long long ans =;
long long tmp;
ans += (b/p)*(d/p)*p;
ma = b%p;
mb = d%p;
ans += (ma+)*(d/p) + (mb+)*(b/p);
if(ma>m){
ans += min(m+,mb+);
tmp = (p+m-ma)%p;
if(tmp<=mb) ans += (mb-tmp+);
}else{
tmp = (m-ma+p)%p;
if(tmp<=mb)
ans += min(m-tmp+,mb-tmp+);
}
return ans;
} long long gcd(long long a,long long b){
if(b==)
return a;
return gcd(b,a%b);
} int main()
{
int t;
cin>>t;
int cnt;
for(cnt=;cnt<=t;cnt++){
cin>>a>>b>>c>>d>>p>>m;
long long res;
res = sol(b,d)-sol(b,c-)-sol(a-,d)+sol(a-,c-);
long long sum =(long long ) ((b-a+)*(d-c+));
long long gcdD = gcd(res ,sum);
// cout<<res<<"------------>"<<sum<<endl;
res = res/gcdD;
sum = sum/gcdD;
cout<<"Case #"<<cnt<<": ";
cout<<res<<"/"<<sum<<endl;
}
return ;
}