Java程序员的Golang入门指南(上)

时间:2024-01-11 16:42:26

Java程序员的Golang入门指南

1.序言

Golang作为一门出身名门望族的编程语言新星,像豆瓣的Redis平台Codis、类Evernote的云笔记leanote等。

1.1 为什么要学习

如果有人说X语言比Y语言好,两方的支持者经常会激烈地争吵。如果你是某种语言老手,你就是那门语言的“传道者”,下意识地会保护它。无论承认与否,你都已被困在一个隧道里,你看到的完全是局限的。《肖申克的救赎》对此有很好的注脚:

[Red] These walls are funny. First you hate ‘em, then you get used to ‘em. Enough time passes, you get so you depend on them. That’s institutionalized.

这些墙很有趣。起初你恨它们,之后你习惯了它们。随着时间流逝,你开始以来它们。这就是*。

在你还没有被完全“*化”时,为何不多学些语言,哪怕只是浅尝辄止,潜移默化中也许你的思维壁垒就松动了。不管是Golang还是Ruby还是其他语言,当看到一些语法习惯与之前熟悉的C和Java不同时,的确潜意识里就会产生抵触情绪,觉得这不好,还是自己习惯的那套好。长此以往,如果不能冲破自己的心理,“坐以待毙”,被时间淘汰恐怕只是早晚的事儿。所以这里的关键也 不是非要学习Golang,而是要不断地学!

1.2 豪华的开发团队

(略)

1.3 用什么工具来开发

Golang也有专门的IDE,但由于最近迷上了Sublime Text神器,所以这里还是用ST来学习Golang。配置步骤与在ST中使用其他语言开发都类似:

  1. 安装智能提示插件GoSublime
  2. 创建编译配置脚本

点Preferences -> Package Settings -> GoSublime -> User Settings中写入(感觉保存时自动格式化出来的缩进、空格等风格有些“讨厌”,所以就禁掉了):

{
"fmt_enabled": false,
"env": {
"path":"D:\\Program Files (x86)\\Go\bin"
}
}

点新建Build System产生go.sublime-build中写入:

{
"path": "D:\\Program Files (x86)\\Go\\bin",
"cmd": ["go", "run", "${file}"],
"selector": "source.go"
}

2.你好,世界

Golang版的HelloWorld来了!一眼望去,package和import的声明方式与Java如出一辙,比较明显的区别是:func关键字、每行末尾没有分号、Println()大写的函数名。这个例子虽小,却“五脏俱全”,后面会逐一分析这个小例子中碰到的Golang语法点。

package main

import "fmt"

func main() {
fmt.Println("你好,世界!")
}

2.1 运行方式

Golang提供了go run“解释”执行和go build编译执行两种运行方式,所谓的“解释”执行其实也是编译出了可执行文件后才执行的。

$ go run helloworld.go
你好,世界! $ go build helloworld.go
$ ls
helloworld helloworld.go
$ ./helloworld
你好,世界!

2.2 Package管理

上面例子中我们使用的就是fmt包下的Println()函数。Golang约定:我们可以用./或../相对路径来引自己的package;如果不是相对路径,那么go会去$GOPATH/src下查找。

2.3 格式化输出

类似C、Java等语言,Golang的fmt包提供了格式化输出功能,而且像%d、%s等占位符和\t、\r、\n转义也几乎完全一致。但Golang的Println不支持格式化,只有Printf支持,所以我们经常会在后面加入\n换行。此外,Golang加入了%T打印值的类型,%v打印数组等集合的所有元素。

package main

import "fmt"
import "math" /**
* This is Printer!
* 布尔值:false
* 二进制:11111111
* 八进制:377
* 十六进制:FF
* 十进制:255
* 浮点数:3.141593
* 字符串:printer
*
* 对象类型:int,string,bool,float64
* 集合:[1 2 3 4 5]
*/
func main() {
fmt.Println("This is Printer!") fmt.Printf("布尔值:%t\n", 1 == 2)
fmt.Printf("二进制:%b\n", 255)
fmt.Printf("八进制:%o\n", 255)
fmt.Printf("十六进制:%X\n", 255)
fmt.Printf("十进制:%d\n", 255)
fmt.Printf("浮点数:%f\n", math.Pi)
fmt.Printf("字符串:%s\n", "printer") fmt.Printf("对象类型:%T,%T,%T,%T\n", 1, "hello", true, math.E)
fmt.Printf("集合:%v\n", [5]int{1, 2, 3, 4, 5})
}

3.语法基础

3.1 变量和常量

虽然Golang是静态类型语言,却用类似JavaScript中的var关键字声明变量。而且像同样是静态语言的Scala一样,支持类型自动推断。有一点很重要的不同是:如果明确指明变量类型的话,类型要放在变量名后面。这有点别扭吧?!后面会看到函数的入参和返回值的类型也要这样声明。

package main

import "fmt"

/**
* 单变量声明:num[100], word[hello]
* 多变量声明:i[1], i[2], k[3]
* 推导类型:b1[true], b2[false]
* 常量:age[20], pi[3.141593]
*/
func main() {
var num int = 100
var word string = "hello"
fmt.Printf("单变量声明:num[%d], word[%s]\n", num, word) var i, j, k int = 1, 2, 3
fmt.Printf("多变量声明:i[%d], i[%d], k[%d]\n", i, j, k) var b1 = true
b2 := false
fmt.Printf("推导类型:b1[%t], b2[%t]\n", b1, b2) const age int = 20
const pi float32 = 3.1415926
fmt.Printf("常量:age[%d], pi[%f]\n", age, pi)
}

3.2 控制语句

作为最基本的语法要素,Golang的各种控制语句也是特点鲜明。在对C继承发扬的同时,也有自己的想法融入其中:

  • if/switch/for的条件部分都没有圆括号,但必须有花括号。
  • switch的case中不需要break。《C专家编程》里也“控诉”了C的fall-through问题。既然90%以上的情况都要break,为何不将break作为case的默认行为?而且编程语言后来者也鲜有纠正这一问题的。
  • switch的case条件可以是多个值
  • Golang中没有while
package main

import "fmt"

/**
* testIf: x[2] is even
* testIf: x[3] is odd
*
* testSwitch: One
* testSwitch: Two
* testSwitch: Three, Four, Five [3]
* testSwitch: Three, Four, Five [4]
* testSwitch: Three, Four, Five [5]
*
* 标准模式:[0] [1] [2] [3] [4] [5] [6]
* While模式:[0] [1] [2] [3] [4] [5] [6]
* 死循环模式:[0] [1] [2] [3] [4] [5] [6]
*/
func main() {
testIf(2)
testIf(3)
testSwitch(1)
testSwitch(2)
testSwitch(3)
testSwitch(4)
testSwitch(5)
testFor(7)
} func testIf(x int) {
if x % 2 == 0 {
fmt.Printf("testIf: x[%d] is even\n", x)
} else {
fmt.Printf("testIf: x[%d] is odd\n", x)
}
} func testSwitch(i int) {
switch i {
case 1:
fmt.Println("testSwitch: One")
case 2:
fmt.Println("testSwitch: Two")
case 3, 4, 5:
fmt.Printf("testSwitch: Three, Four, Five [%d]\n", i)
default:
fmt.Printf("testSwitch: Invalid value[%d]\n", i)
}
} func testFor(upper int) {
fmt.Print("标准模式:")
for i := 0; i < upper; i++ {
fmt.Printf("[%d] ", i)
}
fmt.Println() fmt.Print("While模式:")
j := 0
for j < upper {
fmt.Printf("[%d] ", j)
j++
}
fmt.Println() fmt.Print("死循环模式:")
k := 0
for {
if (k >= upper) {
break
}
fmt.Printf("[%d] ", k)
k++
}
fmt.Println()
}

分号和花括号

分号由词法分析器在扫描源代码过程自动插入的,分析器使用简单的规则:如果在一个新行前方的最后一个标记是一个标识符(包括像int和float64这样的单词)、一个基本的如数值这样的文字、或break continue fallthrough return ++ – ) }中的一个时,它就会自动插入分号。

分号的自动插入规则产生了“蝴蝶效应”:所有控制结构的左花括号不都能放在下一行。因为按照上面的规则,这样做会导致分析器在左花括号的前方插入一个分号,从而引起难以预料的结果。所以Golang中是不能随便换行的

3.3 函数

函数有几点不同:

  • func关键字。
  • 最大的不同就是“倒序”的类型声明
  • 不需要函数原型,引用的函数可以后定义。这一点很好,真不喜欢C语言里要么将“最底层抽象”的函数放在最前面定义,要么写一堆函数原型声明在最前面。

3.4 集合

Golang提供了数组和Map作为基本数据结构:

  • 数组中的元素会自动初始化,例如int数组元素初始化为0
  • 切片(借鉴Python)的区间跟主流语言一样,都是 “左闭右开”
  • range()遍历数组和Map
package main

import "fmt"

/**
* Array未初始化: [0 0 0 0 0]
* Array赋值: [0 10 0 20 0]
* Array初始化: [0 1 2 3 4 5]
* Array二维: [[0 1 2] [1 2 3]]
* Array切片: [2 3] [0 1 2 3] [2 3 4 5]
*
* Map哈希表:map[one:1 two:2 three:3],长度[3]
* Map删除元素后:map[one:1 three:3],长度[2]
* Map打印:
* one => 1
* four => 4
* three => 3
* five => 5
*/
func main() {
testArray()
testMap()
} func testArray() {
var a [5]int
fmt.Println("Array未初始化: ", a) a[1] = 10
a[3] = 20
fmt.Println("Array赋值: ", a) b := []int{0, 1, 2, 3, 4, 5}
fmt.Println("Array初始化: ", b) var c [2][3]int
for i := 0; i < 2; i++ {
for j := 0; j < 3; j++ {
c[i][j] = i + j
}
}
fmt.Println("Array二维: ", c) d := b[2:4] // b[3,4]
e := b[:4] // b[1,2,3,4]
f := b[2:] // b[3,4,5]
fmt.Println("Array切片:", d, e, f)
} func testMap() {
m := make(map[string]int) m["one"] = 1
m["two"] = 2
m["three"] = 3
fmt.Printf("Map哈希表:%v,长度[%d]\n", m, len(m)) delete(m, "two")
fmt.Printf("Map删除元素后:%v,长度[%d]\n", m, len(m)) m["four"] = 4
m["five"] = 5
fmt.Println("Map打印:")
for key, val := range m {
fmt.Printf("\t%s => %d\n", key, val)
}
fmt.Println()
}

3.5 指针和内存分配

Golang中可以使用指针,并提供了两种内存分配机制:

  • new:分配长度为0的空白内存,返回类型T*。
  • make:仅用于 切片、map、chan消息管道,返回类型T而不是指针。
package main

import "fmt"

/**
* 整数i=[10],指针pInt=[0x184000c0],指针指向*pInt=[10]
* 整数i=[3],指针pInt=[0x184000c0],指针指向*pInt=[3]
* 整数i=[5],指针pInt=[0x184000c0],指针指向*pInt=[5]
*
* Wild的数组指针: <nil>
* Wild的数组指针==nil[true]
*
* New分配的数组指针: &[]
* New分配的数组指针[0x18443010],长度[0]
* New分配的数组指针==nil[false]
* New分配的数组指针Make后: &[0 0 0 0 0 0 0 0 0 0]
* New分配的数组元素[3]: 23
*
* Make分配的数组引用: [0 0 0 0 0 0 0 0 0 0]
*/
func main() {
testPointer()
testMemAllocate()
} func testPointer() {
var i int = 10;
var pInt *int = &i;
fmt.Printf("整数i=[%d],指针pInt=[%p],指针指向*pInt=[%d]\n",
i, pInt, *pInt) *pInt = 3
fmt.Printf("整数i=[%d],指针pInt=[%p],指针指向*pInt=[%d]\n",
i, pInt, *pInt) i = 5
fmt.Printf("整数i=[%d],指针pInt=[%p],指针指向*pInt=[%d]\n",
i, pInt, *pInt)
} func testMemAllocate() {
var pNil *[]int
fmt.Println("Wild的数组指针:", pNil)
fmt.Printf("Wild的数组指针==nil[%t]\n", pNil == nil) var p *[]int = new([]int)
fmt.Println("New分配的数组指针:", p)
fmt.Printf("New分配的数组指针[%p],长度[%d]\n", p, len(*p))
fmt.Printf("New分配的数组指针==nil[%t]\n", p == nil) //Error occurred
//(*p)[3] = 23 *p = make([]int, 10)
fmt.Println("New分配的数组指针Make后:", p)
(*p)[3] = 23
fmt.Println("New分配的数组元素[3]:", (*p)[3]) var v []int = make([]int, 10)
fmt.Println("Make分配的数组引用:", v)
}

3.6 面向对象编程

Golang的结构体跟C有几点不同:

  • 结构体可以有方法,其实也就相当于OOP中的类了。
  • 支持带名称的初始化。
  • 用指针访问结构中的属性也用”.”而不是”->”,指针就像Java中的引用一样。
  • 没有public,protected,private等访问权限控制。C也没有protected,C中默认是public的,private需要加static关键字限定。Golang中方法名大写就是public的,小写就是private的。

同时,Golang支持接口和多态,而且接口有别于Java中继承和实现的方式,而是采取了类似Ruby中更为新潮的Duck Type。只要struct与interface有相同的方法,就认为struct实现了这个接口。就好比只要能像鸭子那样叫,我们就认为它是一只鸭子一样。

package main

import (
"fmt"
"math"
) // -----------------
// Struct
// ----------------- type Person struct {
name string
age int
email string
} func (p *Person) getName() string {
return p.name
} // -------------------
// Interface
// ------------------- type shape interface {
area() float64
} type rect struct {
width float64
height float64
} func (r *rect) area() float64 {
return r.width * r.height
} type circle struct {
radius float64
} func (c *circle) area() float64 {
return math.Pi * c.radius * c.radius
} // -----------------
// Test
// ----------------- /**
* 结构Person[{cdai 30 cdai@gmail.com}],姓名[cdai]
* 结构Person指针[&{cdai 30 cdai@gmail.com}],姓名[cdai]
* 用指针修改结构Person为[{carter 40 cdai@gmail.com}]
*
* Shape[0]周长为[13.920000]
* Shape[1]周长为[58.088048]
*/
func main() {
testStruct()
testInterface()
} func testStruct() {
p1 := Person{"cdai", 30, "cdai@gmail.com"}
p1 = Person{name: "cdai", age: 30, email: "cdai@gmail.com"}
fmt.Printf("结构Person[%v],姓名[%s]\n", p1, p1.getName()) ptr1 := &p1
fmt.Printf("结构Person指针[%v],姓名[%s]\n", ptr1, ptr1.getName()) ptr1.age = 40
ptr1.name = "carter"
fmt.Printf("用指针修改结构Person为[%v]\n", p1)
} func testInterface() {
r := rect { width: 2.9, height: 4.8 }
c := circle { radius: 4.3 } s := []shape{ &r, &c }
for i, sh := range s {
fmt.Printf("Shape[%d]周长为[%f]\n", i, sh.area())
}
}

3.7 异常处理

Golang中异常的使用比较简单,可以用errors.New创建,也可以实现Error接口的方法来自定义异常类型,同时利用函数的多返回值特性可以返回异常类。比较复杂的是defer和recover关键字的使用。Golang没有采取try-catch“包住”可能出错代码的这种方式,而是用 延迟处理 的方式。

用defer调用的函数会以后进先出(LIFO)的方式,在当前函数结束后依次顺行执行。defer的这一特点正好可以用来处理panic。当panic被调用时,它将立即停止当前函数的执行并开始逐级解开函数堆栈,同时运行所有被defer的函数。如果这种解开达到堆栈的顶端,程序就死亡了。但是,也可以使用内建的recover函数来重新获得Go程的控制权并恢复正常的执行。由于仅在解开期间运行的代码处在被defer的函数之内,recover仅在被延期的函数内部才是有用的

package main

import (
"fmt"
"errors"
"os"
) /**
* 自定义Error类型,实现内建Error接口
* type Error interface {
* Error() string
* }
*/
type MyError struct {
arg int
msg string
} func (e *MyError) Error() string {
return fmt.Sprintf("%d - %s", e.arg, e.msg)
} /**
* Failed[*errors.errorString]: Bad Arguments - negative!
* Success: 16
* Failed[*main.MyError]: 1000 - Bad Arguments - too large!
*
* Recovered! Panic message[Cannot find specific file]
* 4 3 2 1 0
*/
func main() {
// 1.Test error
args := []int{-1, 4, 1000}
for _, i := range args {
if r, e := testError(i); e != nil {
fmt.Printf("Failed[%T]: %v\n", e, e)
} else {
fmt.Println("Success: ", r)
}
} // 2.Test defer
src, err := os.Open("control.go")
if (err != nil) {
fmt.Printf("打开文件错误[%v]\n", err)
return
}
defer src.Close()
// use src... for i := 0; i < 5; i++ {
defer fmt.Printf("%d ", i)
} // 3.Test panic/recover
defer func() {
if r := recover(); r != nil {
fmt.Printf("Recovered! Panic message[%s]\n", r)
}
}() _, err2 := os.Open("test.go")
if (err2 != nil) {
panic("Cannot find specific file")
}
} func testError(arg int) (int, error) {
if arg < 0 {
return -1, errors.New("Bad Arguments - negative!")
} else if arg > 256 {
return -1, &MyError{ arg, "Bad Arguments - too large!" }
} else {
return arg * arg, nil
}
}