引言
Spring Batch是处理大量数据操作的一个框架,主要用来读取大量数据,然后进行一定的处理后输出指定的形式。比如我们可以将csv文件中的数据(数据量几百万甚至几千万都是没问题的)批处理插入保存到数据库中,就可以使用该框架,但是不管是数据资料还是网上资料,我看到很少有这样的详细讲解。所以本片博文的主要目的边讲解的同时边实战(其中的代码都是经过实践的)。同样地先从Spring Boot对Batch框架的支持说起,最后一步一步进行代码实践!
一、Spring Boot对Batch框架的支持
1、Spring Batch框架的组成部分
1)JobRepository:用来注册Job容器,设置数据库相关属性。
2)JobLauncher:用来启动Job的接口
3)Job:我们要实际执行的任务,包含一个或多个
4)Step:即步骤,包括:ItemReader->ItemProcessor->ItemWriter
5)ItemReader:用来读取数据,做实体类与数据字段之间的映射。比如读取csv文件中的人员数据,之后对应实体person的字段做mapper
6)ItemProcessor:用来处理数据的接口,同时可以做数据校验(设置校验器,使用JSR-303(hibernate-validator)注解),比如将中文性别男/女,转为M/F。同时校验年龄字段是否符合要求等
7)ItemWriter:用来输出数据的接口,设置数据库源。编写预处理SQL插入语句
以上七个组成部分,只需要在配置类中逐一注册即可,同时配置类需要开启@EnableBatchProcessing注解
@Configuration
@EnableBatchProcessing // 开启批处理的支持
@Import(DruidDBConfig.class) // 注入datasource
public class CsvBatchConfig { }
2、批处理流程图
如下流程图即可以解释在配置类中为什么需要这么定义,具体请看实战部分的代码。
二、实战
1、添加依赖
1)spring batch依赖
<!-- spring batch -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-batch</artifactId>
</dependency>
2)校验器依赖
<!-- hibernate validator -->
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-validator</artifactId>
<version>6.0.7.Final</version>
</dependency>
3)mysql+druid依赖
<!-- mysql connector-->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.35</version>
</dependency>
<!-- alibaba dataSource -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.1.12</version>
</dependency>
4)test测试依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
</dependency>
2、application.yml配置
当job发布开始执行任务时,spring batch会自动生成相关的batch开头的表。这些表一开始是不存在的!需要在application配置文件中做相关的设置。
# batch
batch:
job:
# 默认自动执行定义的Job(true),改为false,需要jobLaucher.run执行
enabled: false
# spring batch在数据库里面创建默认的数据表,如果不是always则会提示相关表不存在
initialize-schema: always
# 设置batch表的前缀
# table-prefix: csv-batch
3、数据源配置
datasource:
username: root
password: 1234
url: jdbc:mysql://127.0.0.1:3306/db_base?useSSL=false&serverTimezone=UTC&characterEncoding=utf8
driver-class-name: com.mysql.jdbc.Driver
注册DBConfig配置类:之后通过import导入batch配置类中
/**
* @author jian
* @dete 2019/4/20
* @description 自定义DataSource
*
*/
@Configuration
public class DruidDBConfig { private Logger logger = LoggerFactory.getLogger(DruidDBConfig.class); @Value("${spring.datasource.url}")
private String dbUrl; @Value("${spring.datasource.username}")
private String username; @Value("${spring.datasource.password}")
private String password; @Value("${spring.datasource.driver-class-name}")
private String driverClassName; /* @Value("${spring.datasource.initialSize}")
private int initialSize; @Value("${spring.datasource.minIdle}")
private int minIdle; @Value("${spring.datasource.maxActive}")
private int maxActive; @Value("${spring.datasource.maxWait}")
private int maxWait; @Value("${spring.datasource.timeBetweenEvictionRunsMillis}")
private int timeBetweenEvictionRunsMillis; @Value("${spring.datasource.minEvictableIdleTimeMillis}")
private int minEvictableIdleTimeMillis; @Value("${spring.datasource.validationQuery}")
private String validationQuery; @Value("${spring.datasource.testWhileIdle}")
private boolean testWhileIdle; @Value("${spring.datasource.testOnBorrow}")
private boolean testOnBorrow; @Value("${spring.datasource.testOnReturn}")
private boolean testOnReturn; @Value("${spring.datasource.poolPreparedStatements}")
private boolean poolPreparedStatements; @Value("${spring.datasource.maxPoolPreparedStatementPerConnectionSize}")
private int maxPoolPreparedStatementPerConnectionSize; @Value("${spring.datasource.filters}")
private String filters; @Value("{spring.datasource.connectionProperties}")
private String connectionProperties;*/ @Bean
@Primary // 被注入的优先级最高
public DataSource dataSource() {
DruidDataSource dataSource = new DruidDataSource();
logger.info("-------->dataSource[url="+dbUrl+" ,username="+username+"]");
dataSource.setUrl(dbUrl);
dataSource.setUsername(username);
dataSource.setPassword(password);
dataSource.setDriverClassName(driverClassName); /* //configuration
datasource.setInitialSize(initialSize);
datasource.setMinIdle(minIdle);
datasource.setMaxActive(maxActive);
datasource.setMaxWait(maxWait);
datasource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
datasource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
datasource.setValidationQuery(validationQuery);
datasource.setTestWhileIdle(testWhileIdle);
datasource.setTestOnBorrow(testOnBorrow);
datasource.setTestOnReturn(testOnReturn);
datasource.setPoolPreparedStatements(poolPreparedStatements);
datasource.setMaxPoolPreparedStatementPerConnectionSize(maxPoolPreparedStatementPerConnectionSize);
try {
datasource.setFilters(filters);
} catch (SQLException e) {
logger.error("druid configuration initialization filter", e);
}
datasource.setConnectionProperties(connectionProperties);*/ return dataSource;
} @Bean
public ServletRegistrationBean druidServletRegistrationBean() {
ServletRegistrationBean servletRegistrationBean = new ServletRegistrationBean();
servletRegistrationBean.setServlet(new StatViewServlet());
servletRegistrationBean.addUrlMappings("/druid/*");
return servletRegistrationBean;
} /**
* 注册DruidFilter拦截
*
* @return
*/
@Bean
public FilterRegistrationBean duridFilterRegistrationBean() {
FilterRegistrationBean filterRegistrationBean = new FilterRegistrationBean();
filterRegistrationBean.setFilter(new WebStatFilter());
Map<String, String> initParams = new HashMap<String, String>();
//设置忽略请求
initParams.put("exclusions", "*.js,*.gif,*.jpg,*.bmp,*.png,*.css,*.ico,/druid/*");
filterRegistrationBean.setInitParameters(initParams);
filterRegistrationBean.addUrlPatterns("/*");
return filterRegistrationBean;
}
}
4、编写batch配置类
在配置类中,注册Spring Batch的各个组成部分即可,其中部分说明已在代码中注释.
/**
*
* @author jian
* @date 2019/4/28
* @description spring batch cvs文件批处理配置需要注入Spring Batch以下组成部分
* spring batch组成:
* 1)JobRepository 注册job的容器
* 2)JonLauncher 用来启动job的接口
* 3)Job 实际执行的任务,包含一个或多个Step
* 4)Step Step步骤包括ItemReader、ItemProcessor和ItemWrite
* 5)ItemReader 读取数据的接口
* 6)ItemProcessor 处理数据的接口
* 7)ItemWrite 输出数据的接口
*
*
*/
@Configuration
@EnableBatchProcessing // 开启批处理的支持
@Import(DruidDBConfig.class) // 注入datasource
public class CsvBatchConfig {
private Logger logger = LoggerFactory.getLogger(CsvBatchConfig.class); /**
* ItemReader定义:读取文件数据+entirty映射
* @return
*/
@Bean
public ItemReader<Person> reader(){
// 使用FlatFileItemReader去读cvs文件,一行即一条数据
FlatFileItemReader<Person> reader = new FlatFileItemReader<>();
// 设置文件处在路径
reader.setResource(new ClassPathResource("person.csv"));
// entity与csv数据做映射
reader.setLineMapper(new DefaultLineMapper<Person>() {
{
setLineTokenizer(new DelimitedLineTokenizer() {
{
setNames(new String[]{"id", "name", "age", "gender"});
}
});
setFieldSetMapper(new BeanWrapperFieldSetMapper<Person>() {
{
setTargetType(Person.class);
}
});
}
});
return reader;
} /**
* 注册ItemProcessor: 处理数据+校验数据
* @return
*/
@Bean
public ItemProcessor<Person, Person> processor(){
CvsItemProcessor cvsItemProcessor = new CvsItemProcessor();
// 设置校验器
cvsItemProcessor.setValidator(csvBeanValidator());
return cvsItemProcessor;
} /**
* 注册校验器
* @return
*/
@Bean
public CsvBeanValidator csvBeanValidator(){
return new CsvBeanValidator<Person>();
} /**
* ItemWriter定义:指定datasource,设置批量插入sql语句,写入数据库
* @param dataSource
* @return
*/
@Bean
public ItemWriter<Person> writer(DataSource dataSource){
// 使用jdbcBcatchItemWrite写数据到数据库中
JdbcBatchItemWriter<Person> writer = new JdbcBatchItemWriter<>();
// 设置有参数的sql语句
writer.setItemSqlParameterSourceProvider(new BeanPropertyItemSqlParameterSourceProvider<Person>());
String sql = "insert into person values(:id,:name,:age,:gender)";
writer.setSql(sql);
writer.setDataSource(dataSource);
return writer;
} /**
* JobRepository定义:设置数据库,注册Job容器
* @param dataSource
* @param transactionManager
* @return
* @throws Exception
*/
@Bean
public JobRepository cvsJobRepository(DataSource dataSource, PlatformTransactionManager transactionManager) throws Exception{
JobRepositoryFactoryBean jobRepositoryFactoryBean = new JobRepositoryFactoryBean();
jobRepositoryFactoryBean.setDatabaseType("mysql");
jobRepositoryFactoryBean.setTransactionManager(transactionManager);
jobRepositoryFactoryBean.setDataSource(dataSource);
return jobRepositoryFactoryBean.getObject();
} /**
* jobLauncher定义:
* @param dataSource
* @param transactionManager
* @return
* @throws Exception
*/
@Bean
public SimpleJobLauncher csvJobLauncher(DataSource dataSource, PlatformTransactionManager transactionManager) throws Exception{
SimpleJobLauncher jobLauncher = new SimpleJobLauncher();
// 设置jobRepository
jobLauncher.setJobRepository(cvsJobRepository(dataSource, transactionManager));
return jobLauncher;
} /**
* 定义job
* @param jobs
* @param step
* @return
*/
@Bean
public Job importJob(JobBuilderFactory jobs, Step step){
return jobs.get("importCsvJob")
.incrementer(new RunIdIncrementer())
.flow(step)
.end()
.listener(csvJobListener())
.build();
} /**
* 注册job监听器
* @return
*/
@Bean
public CsvJobListener csvJobListener(){
return new CsvJobListener();
} /**
* step定义:步骤包括ItemReader->ItemProcessor->ItemWriter 即读取数据->处理校验数据->写入数据
* @param stepBuilderFactory
* @param reader
* @param writer
* @param processor
* @return
*/
@Bean
public Step step(StepBuilderFactory stepBuilderFactory, ItemReader<Person> reader,
ItemWriter<Person> writer, ItemProcessor<Person, Person> processor){
return stepBuilderFactory
.get("step")
.<Person, Person>chunk(65000) // Chunk的机制(即每次读取一条数据,再处理一条数据,累积到一定数量后再一次性交给writer进行写入操作)
.reader(reader)
.processor(processor)
.writer(writer)
.build(); }
}
5、定义处理器
只需要实现ItemProcessor接口,重写process方法,输入的参数是从ItemReader读取到的数据,返回的数据给ItemWriter
/**
* @author jian
* @date 2019/4/28
* @description
* CSV文件数据处理及校验
* 只需要实现ItemProcessor接口,重写process方法,输入的参数是从ItemReader读取到的数据,返回的数据给ItemWriter
*/
public class CvsItemProcessor extends ValidatingItemProcessor<Person> {
private Logger logger = LoggerFactory.getLogger(CvsItemProcessor.class); @Override
public Person process(Person item) throws ValidationException {
// 执行super.process()才能调用自定义的校验器
logger.info("processor start validating...");
super.process(item); // 数据处理,比如将中文性别设置为M/F
if ("男".equals(item.getGender())) {
item.setGender("M");
} else {
item.setGender("F");
}
logger.info("processor end validating...");
return item;
}
}
6、定义校验器
定义校验器:使用JSR-303(hibernate-validator)注解,来校验ItemReader读取到的数据是否满足要求。如不满足则不会进行接下来的批处理任务。
/**
*
* @author jian
* @date 2019/4/28
* @param <T>
* @description 定义校验器:使用JSR-303(hibernate-validator)注解,来校验ItemReader读取到的数据是否满足要求。
*/ public class CsvBeanValidator<T> implements Validator<T>, InitializingBean { private javax.validation.Validator validator; /**
* 进行JSR-303的Validator的初始化
* @throws Exception
*/
@Override
public void afterPropertiesSet() throws Exception {
ValidatorFactory validatorFactory = Validation.buildDefaultValidatorFactory();
validator = validatorFactory.usingContext().getValidator();
} /**
* 使用validator方法检验数据
* @param value
* @throws ValidationException
*/
@Override
public void validate(T value) throws ValidationException {
Set<ConstraintViolation<T>> constraintViolations = validator.validate(value);
if (constraintViolations.size() > 0) {
StringBuilder message = new StringBuilder();
for (ConstraintViolation<T> constraintViolation: constraintViolations) {
message.append(constraintViolation.getMessage() + "\n");
}
throw new ValidationException(message.toString());
}
}
}
7、定义监听器:
监听Job执行情况,则定义一个类实现JobExecutorListener,并定义Job的Bean上绑定该监听器
/**
* @author jian
* @date 2019/4/28
* @description
* 监听Job执行情况,则定义一个类实现JobExecutorListener,并定义Job的Bean上绑定该监听器
*/
public class CsvJobListener implements JobExecutionListener { private Logger logger = LoggerFactory.getLogger(CsvJobListener.class);
private long startTime;
private long endTime; @Override
public void beforeJob(JobExecution jobExecution) {
startTime = System.currentTimeMillis();
logger.info("job process start...");
} @Override
public void afterJob(JobExecution jobExecution) {
endTime = System.currentTimeMillis();
logger.info("job process end...");
logger.info("elapsed time: " + (endTime - startTime) + "ms");
}
}
三、测试
1、person.csv文件
csv文件时以逗号为分隔的数据表示字段,回车表示一行(条)数据记录
1,Zhangsan,21,男
2,Lisi,22,女
3,Wangwu,23,男
4,Zhaoliu,24,男
5,Zhouqi,25,女
放在resources下,在ItemReader中读取的该路径即可
2、person实体
person.csv中的字段与之对应,并在该实体中可以添加校验注解,如@Size表示该字段的长度范围,如果超过规定。则会被校验检测到,批处理将不会进行!
public class Person implements Serializable {
private final long serialVersionUID = 1L; private String id;
@Size(min = 2, max = 8)
private String name;
private int age;
private String gender; public String getId() {
return id;
} public void setId(String id) {
this.id = id;
} public String getName() {
return name;
} public void setName(String name) {
this.name = name;
} public int getAge() {
return age;
} public void setAge(int age) {
this.age = age;
} public String getGender() {
return gender;
} public void setGender(String gender) {
this.gender = gender;
} @Override
public String toString() {
return "Person{" +
"id='" + id + '\'' +
", name='" + name + '\'' +
", age=" + age +
", gender='" + gender + '\'' +
'}';
}
}
3、数据表
CREATE TABLE `person` (
`id` int(11) NOT NULL,
`name` varchar(10) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`gender` varchar(2) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
一开始表是没有数据的
4、测试类
需要注入发布器,与job任务。同时可以使用后置参数灵活处理,最后调用JobLauncher.run方法执行批处理任务
@RunWith(SpringRunner.class)
@SpringBootTest
public class BatchTest { @Autowired
SimpleJobLauncher jobLauncher; @Autowired
Job importJob; @Test
public void test() throws Exception{
// 后置参数:使用JobParameters中绑定参数
JobParameters jobParameters = new JobParametersBuilder().addLong("time", System.currentTimeMillis())
.toJobParameters();
jobLauncher.run(importJob, jobParameters);
}
}
5、测试结果
....
2019-05-09 15:23:39.576 INFO 18296 --- [ main] com.lijian.test.BatchTest : Started BatchTest in 6.214 seconds (JVM running for 7.185)
2019-05-09 15:23:39.939 INFO 18296 --- [ main] o.s.b.c.l.support.SimpleJobLauncher : Job: [FlowJob: [name=importCsvJob]] launched with the following parameters: [{time=1557386619763}]
2019-05-09 15:23:39.982 INFO 18296 --- [ main] com.lijian.config.batch.CsvJobListener : job process start...
2019-05-09 15:23:40.048 INFO 18296 --- [ main] o.s.batch.core.job.SimpleStepHandler : Executing step: [step]
2019-05-09 15:23:40.214 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor start validating...
2019-05-09 15:23:40.282 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor end validating...
2019-05-09 15:23:40.283 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor start validating...
2019-05-09 15:23:40.283 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor end validating...
2019-05-09 15:23:40.283 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor start validating...
2019-05-09 15:23:40.283 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor end validating...
2019-05-09 15:23:40.283 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor start validating...
2019-05-09 15:23:40.283 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor end validating...
2019-05-09 15:23:40.283 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor start validating...
2019-05-09 15:23:40.284 INFO 18296 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor end validating...
2019-05-09 15:23:40.525 INFO 18296 --- [ main] com.lijian.config.batch.CsvJobListener : job process end...
2019-05-09 15:23:40.526 INFO 18296 --- [ main] com.lijian.config.batch.CsvJobListener : elapsed time: 543ms
2019-05-09 15:23:40.548 INFO 18296 --- [ main] o.s.b.c.l.support.SimpleJobLauncher : Job: [FlowJob: [name=importCsvJob]] completed with the following parameters: [{time=1557386619763}] and the following status: [COMPLETED]
2019-05-09 15:23:40.564 INFO 18296 --- [ Thread-5] com.alibaba.druid.pool.DruidDataSource : {dataSource-1} closed
查看表中数据: select * from person;
若继续插入数据,并且测试校验器是否生效,则将person.csv更改为如下内容:
6,springbatch,24,男
7,springboot,23,女
由于实体类中JSR校验注解对name长度范围进行了检验,即添加了 @Size(min=2, max=8) 的注解。故会报错显示校验不通过,批处理将不会进行。
...
Started BatchTest in 5.494 seconds (JVM running for 6.41)
2019-05-09 15:30:02.147 INFO 20368 --- [ main] o.s.b.c.l.support.SimpleJobLauncher : Job: [FlowJob: [name=importCsvJob]] launched with the following parameters: [{time=1557387001499}]
2019-05-09 15:30:02.247 INFO 20368 --- [ main] com.lijian.config.batch.CsvJobListener : job process start...
2019-05-09 15:30:02.503 INFO 20368 --- [ main] o.s.batch.core.job.SimpleStepHandler : Executing step: [step]
2019-05-09 15:30:02.683 INFO 20368 --- [ main] c.lijian.config.batch.CvsItemProcessor : processor start validating...
2019-05-09 15:30:02.761 ERROR 20368 --- [ main] o.s.batch.core.step.AbstractStep : Encountered an error executing step step in job importCsvJob org.springframework.batch.item.validator.ValidationException: size must be between 2 and 8
...