9.27 noip模拟试题

时间:2022-01-12 07:19:26
  1. 工资

(money/money.in/money.out)

时限1000ms 内存256MB

聪哥在暑假参加了打零工的活动,这个活动分为n个工作日,每个工作日的工资为Vi。有m个结算工钱的时间,聪哥可以*安排这些时间,也就是说什么时候拿钱,老板说的不算,聪哥才有发言权!(因为聪哥是土豪,他是老板的老板)

聪哥不喜欢身上一次性有太多的钱,于是他想安排一下拿钱的时间,使他一次性拿的钱中最大的最小。(最后一天一定要领钱)

输入

第一行 2个数 n,m

接下来n行,每行一个数,代表Vi.

输出

最小的最大钱数。

样例输入

7 5

100

400

300

100

500

101

400

样例输出

500

样例说明

100 400//300 100//500//101//400//

“//”表示老大要去拿钱。

数据范围

20%   1<=n<=20

另 20%  1<=n<=50,Vi的和不超过1000

100%  1<=n<=100,000,m<=n,Vi<=10,000

二分

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 100010
using namespace std;
int n,m,a[maxn],l,r,ans;
bool Judge(int x){
int s=,k=;
for(int i=;i<=n;i++)
if(s+a[i]>x){
k++;s=a[i];
}
else s+=a[i];
return k<=m;
}
int main()
{
freopen("money.in","r",stdin);
freopen("money.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
r+=a[i];l=max(l,a[i]);
}
while(l<=r){
int mid=(l+r)/;
if(Judge(mid)){
ans=mid;r=mid-;
}
else l=mid+;
}
printf("%d\n",ans);
return ;
}

第二题  藏妹子之处(excel

问题描述:

今天CZY又找到了三个妹子,有着收藏爱好的他想要找三个地方将妹子们藏起来,将一片空地抽象成一个R行C列的表格,CZY要选出3个单元格。但要满足如下的两个条件:

(1)任意两个单元格都不在同一行。

(2)任意两个单元格都不在同一列。

选取格子存在一个花费,而这个花费是三个格子两两之间曼哈顿距离的和(如(x1,y1)和(x,y2)的曼哈顿距离为|x1-x2|+|y1-y2|)。狗狗想知道的是,花费在minT到maxT之间的方案数有多少。

答案模1000000007。所谓的两种不同方案是指:只要它选中的单元格有一个不同,就认为是不同的方案。

输入格式:

一行,4个整数,R、C、minT、maxT。3≤R,C≤4000, 1≤minT≤maxT≤20000。

对于30%的数据,  3 R, C 70。 

输出格式:

一个整数,表示不同的选择方案数量模1000000007后的结果。

输入输出样例:

输入样例

3 3 1 20000

3 3 4 7

4 6 9 12

7 5 13  18

4000 4000  4000  14000

输出样例

6

0

264

1212

859690013

 

n^4暴力

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define mod 1000000007
using namespace std;
ll n,m,L,R,a,b,c,d,ans;
int main()
{
freopen("excel.in","r",stdin);
freopen("excel.out","w",stdout);
cin>>n>>m>>L>>R;
for(a=;a<=n;a++)
for(ll b=a+;b<=n;b++)
for(c=;c<=m;c++)
for(ll d=c+;d<=m;d++){
ll s=*(b-a+d-c);
if(s>=L&&s<=R)ans=(ans+*(b-a-)%mod*(d-c-)%mod)%mod;
}
cout<<ans%mod<<endl;
return ;
}

n^2

/*
已经想到了^4的做法却没想出正解
感觉很接近了 QAQ
其实每次算的时候用的只是坐标的差
化成矩形的话就是矩形的边长
每种一样大的对答案的贡献还有距离是固定的
所以 枚举矩形....
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define mod 1000000007
using namespace std;
ll n,m,L,R,ans;
int main()
{
freopen("excel.in","r",stdin);
freopen("excel.out","w",stdout);
cin>>n>>m>>L>>R;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
ll s=(i+j-)*;
if(s>=L&&s<=R)ans=(ans+(n-i+)*(m-j+)%mod*(i-)%mod*(j-)%mod*)%mod;
}
cout<<ans<<endl;
return ;
}

 题目描述(临时换了个T3)

设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。

路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a, b)为a, b两结点间的距离。

  D(v, P)=min{d(v, u), u为路径P上的结点}。

树网的直径:树网中最长的路径成为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即

ECC(F)=max{d(v, F),v∈V}

任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。

输入输出格式

输入格式:

输入文件core.in包含n行:

第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号以此为1,2,……,n。

从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。

所给的数据都是争取的,不必检验。

输出格式:

输出文件core.out只有一个非负整数,为指定意义下的最小偏心距。

输入输出样例

输入样例#1

【输入样例1】

5 2

1 2 5

2 3 2

2 4 4

2 5 3

【输入样例2】

8 6

1 3 2

2 3 2

3 4 6

4 5 3

4 6 4

4 7 2

7 8 3

输出样例#1

【输出样例1】

5

【输出样例2】

5

说明

40%的数据满足:5<=n<=15

70%的数据满足:5<=n<=80

100%的数据满足:5<=n<=300,0<=s<=1000。边长度为不超过1000的正整数

暴力

/*难道十年前的题都这么水~~*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 310
using namespace std;
int n,s,inf,g[maxn][maxn],f[maxn][maxn],c[maxn],vis[maxn],l,r,falg,ans,s1,s2;
void Init(){
scanf("%d%d",&n,&s);
memset(g,/,sizeof(g));
int u,v,t;inf=g[][];
for(int i=;i<=n;i++)g[i][i]=;
for(int i=;i<n;i++){
scanf("%d%d%d",&u,&v,&t);
g[u][v]=t;g[v][u]=t;
f[u][v]=f[v][u]=;
}
}
void Floyed(){
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
}
void Dfs(int now,int from,int num){
c[num]=now;
if(now==r){
c[]=num;
falg=;return;
}
for(int i=;i<=n;i++)
if(f[now][i]==&&i!=from){
Dfs(i,now,num+);
if(falg)return;
}
}
void Get_(){
int mx=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(g[i][j]!=inf&&g[i][j]>mx){
mx=g[i][j];l=i;r=j;
}
Dfs(l,,);
}
void dfs1(int now,int from,int sum){
if(now!=l)s1=max(s1,sum);
for(int i=;i<=n;i++){
if(vis[i]||i==from||f[now][i]==)continue;
dfs1(i,now,sum+g[now][i]);
}
}
void dfs2(int now,int from,int sum){
if(now!=r)s2=max(s2,sum);
for(int i=;i<=n;i++){
if(vis[i]||i==from||f[now][i]==)continue;
dfs2(i,now,sum+g[now][i]);
}
}
int Solve(){
ans=inf;
for(int i=;i<=c[];i++)
for(int j=i;j<=c[];j++){
if(g[c[i]][c[j]]>s)continue;
memset(vis,,sizeof(vis));
for(int k=i;k<=j;k++)vis[c[k]]=;
l=c[i];r=c[j];s1=s2=;
dfs1(l,,);dfs2(r,,);
ans=min(ans,max(s1,s2));
}
return ans;
}
int main()
{
Init();Floyed();Get_();
printf("%d\n",Solve());
return ;
}