将ADS1.2的工程迁移到KEIL上-基于2440

时间:2023-03-08 22:12:19
将ADS1.2的工程迁移到KEIL上-基于2440

新版的MDK支持2440相关芯片,但是很多人的工程都是基于ADS1.2开发,文字不好看,兼容性不好等等问题,而且电脑上装太多开发工具切换起来也麻烦,所以切换到MDK开发2440裸机程序应该是一个很好的选择

1.       新建MDK工程,芯片选择2440

将ADS1.2的工程迁移到KEIL上-基于2440

将ADS1.2的工程迁移到KEIL上-基于2440

不拷贝启动代码,因为我们用自己的启动代码

2.       建立工程目录分级,建立完成后如下所示

将ADS1.2的工程迁移到KEIL上-基于2440

拷贝相应代码到对应目录中

Option中拷贝

将ADS1.2的工程迁移到KEIL上-基于2440

Core中拷贝

将ADS1.2的工程迁移到KEIL上-基于2440

建立新的main文件

将ADS1.2的工程迁移到KEIL上-基于2440

将文件加入工程

将ADS1.2的工程迁移到KEIL上-基于2440

路径中建立包含

将ADS1.2的工程迁移到KEIL上-基于2440

还要为asm文件建立包含

将ADS1.2的工程迁移到KEIL上-基于2440

修改2440init.s文件

首先,MDK默认放在最前面的段是RESET段,将2440init.s第84行(可能你的不是)
AREA    Init,CODE,READONLY修改为 AREA    RESET,CODE,READONLY

这样编译器就能找到入口点了

在上面这句下面加上一行

PRESERVE8    ;8 字对齐(为了让汇编代码8字节对齐)

修改

IMPORT  |Image$$RO$$Base| ; Base of ROM code

IMPORT  |Image$$RO$$Limit|  ; End of ROM code (=start of ROM data)

IMPORT  |Image$$RW$$Base|   ; Base of RAM to initialise

IMPORT  |Image$$ZI$$Base|   ; Base and limit of area

IMPORT  |Image$$ZI$$Limit|  ; to zero initialise

这些是通过ADS的工程设置里面设定的RO Base和RW Base设定的,在MDK中的名称不叫这个

修改为

IMPORT  |Image$$ER_ROM1$$RO$$Base|   ; Base of ROM code

IMPORT  |Image$$ER_ROM1$$RO$$Limit|  ; End of ROM code (=start of ROM data)

IMPORT  |Image$$RW_RAM1$$RW$$Base|   ; Base of RAM to initialise

IMPORT  |Image$$RW_RAM1$$ZI$$Base|   ; Base and limit of area

IMPORT  |Image$$RW_RAM1$$ZI$$Limit|  ; to zero initialize

上面的改了下面的这个也要改

BaseOfROM DCD |Image$$RO$$Base|

TopOfROM DCD |Image$$RO$$Limit|

BaseOfBSS DCD |Image$$RW$$Base|

BaseOfZero DCD |Image$$ZI$$Base|

EndOfBSS DCD |Image$$ZI$$Limit|

修改为

BaseOfROM  DCD  |Image$$ER_ROM1$$RO$$Base|

TopOfROM  DCD  |Image$$ER_ROM1$$RO$$Limit|

BaseOfBSS  DCD  |Image$$RW_RAM1$$RW$$Base|

BaseOfZero  DCD  |Image$$RW_RAM1$$ZI$$Base|

EndOfBSS  DCD  |Image$$RW_RAM1$$ZI$$Limit|

此时还需要设置代码运行区和存放区

ROM区域需要打开nand.c中的RdNF2SDRAM函数查看起始地址

将ADS1.2的工程迁移到KEIL上-基于2440

我的起始地址为0x30000000
大小为0x100000

将ADS1.2的工程迁移到KEIL上-基于2440

Size必须大于0x100000,RAM空间大于ROM空间且少于最大物理空间即可(不要忘了打钩勾)

编写Main函数,记住是首字母大写

将ADS1.2的工程迁移到KEIL上-基于2440

此时编译就可以通过了

将ADS1.2的工程迁移到KEIL上-基于2440

随意将一个ADS1.2编写好的led驱动放进去,最终修改如下

Led.h

#ifndef __LED_H
#define __LED_H
#include "2440addr.h" typedef enum
{
LED1 = 0, //GPB5
LED2 = 1, //GPB6
LED3 = 2, //GPB5
LED4 = 3 //GPB8
}LEDn; void ledInit(LEDn led);
void ledInitAll(void);
void ledOn(LEDn led);
void ledOff(LEDn led);
void ledTurn(LEDn led);
unsigned char getLedStatus(LEDn led); //TQ2440led引脚 B5 B6 B7 B8 #endif

Led.c

#include "led.h"

void ledInit(LEDn led)
{
if(led == LED1)
{
rGPBCON &= ~(3<<10); //端口写入01设置为输出模式,先清零
rGPBCON |= (1<<10); //设置为输出
rGPBUP &= ~(1<<5); //禁止上拉
rGPBDAT |= (1<<5); //设置初始值为1,灯灭
}
else if(led == LED2)
{
rGPBCON &= ~(3<<12);
rGPBCON |= (1<<12);
rGPBUP &= ~(1<<6);
rGPBDAT |= (1<<6);
}
else if(led == LED3)
{
rGPBCON &= ~(3<<14);
rGPBCON |= (1<<14);
rGPBUP &= ~(1<<7);
rGPBDAT |= (1<<7);
}
else if(led == LED4)
{
rGPBCON &= ~(3<<16);
rGPBCON |= (1<<16);
rGPBUP &= ~(1<<8);
rGPBDAT |= (1<<8);
}
} void ledInitAll(void)
{
rGPBCON &=~((3<<10)|(3<<12)|(3<<14)|(3<<16)); //对GPBCON[10:17]清零
rGPBCON |=((1<<10)|(1<<12)|(1<<14)|(1<<16)); //设置GPB5~8为输出
rGPBUP &=~((1<<5)|(1<<6)|(1<<7)|(1<<8)); //设置GPB5~8的上拉功能
rGPBDAT |=(1<<5)|(1<<6)|(1<<7)|(1<<8); //关闭LED
} void ledOn(LEDn led)
{
rGPBDAT &= ~(1<<(5+led));
} void ledOff(LEDn led)
{
rGPBDAT |= (1<<(5+led));
} void ledTurn(LEDn led)
{
if(getLedStatus(led))ledOn(led);
else ledOff(led);
} unsigned char getLedStatus(LEDn led)//获取led状态,灭为1亮为0
{
if((rGPBDAT & (1<<(5+led))))return 1;
else return 0;
}

Main.c

#include "2440addr.h"
#include "led.h"
void Delay(void)
{
int i;
for(i=0;i<1000000;i++);
} int Main()
{
ledInitAll();
while(1)
{
ledTurn(LED1);
Delay();
ledTurn(LED2);
Delay();
ledTurn(LED3);
Delay();
ledTurn(LED4);
Delay();
}
}

最后编译,结果如下

将ADS1.2的工程迁移到KEIL上-基于2440

但是生成的是HEX,我们需要指令转换成BIN文件

在这里写入指令

将ADS1.2的工程迁移到KEIL上-基于2440

记住对勾!

编译,提示如下

将ADS1.2的工程迁移到KEIL上-基于2440

BIN文件生成OK了

将ADS1.2的工程迁移到KEIL上-基于2440

下载进去,流水灯完全正常,收工!

最后附带修改好了2440init.s文件

2440init.s

;=========================================
; NAME: 2440INIT.S
; DESC: C start up codes
; Configure memory, ISR ,stacks
; Initialize C-variables
;========================================= GET option.inc
GET memcfg.inc
GET 2440addr.inc BIT_SELFREFRESH EQU (1<<22) ;Pre-defined constants
USERMODE EQU 0x10
FIQMODE EQU 0x11
IRQMODE EQU 0x12
SVCMODE EQU 0x13
ABORTMODE EQU 0x17
UNDEFMODE EQU 0x1b
MODEMASK EQU 0x1f
NOINT EQU 0xc0 ;The location of stacks
UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~
SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~
UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~
AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~
IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~
FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~ ;Check if tasm.exe(armasm -16 ...@ADS 1.0) is used.
GBLL THUMBCODE
[ {CONFIG} = 16
THUMBCODE SETL {TRUE}
CODE32
|
THUMBCODE SETL {FALSE}
] MACRO
MOV_PC_LR
[ THUMBCODE
bx lr
|
mov pc,lr
]
MEND MACRO
MOVEQ_PC_LR
[ THUMBCODE
bxeq lr
|
moveq pc,lr
]
MEND MACRO
$HandlerLabel HANDLER $HandleLabel $HandlerLabel
sub sp,sp,#4 ;decrement sp(to store jump address)
stmfd sp!,{r0} ;PUSH the work register to stack(lr does not push because it return to original address)
ldr r0,=$HandleLabel;load the address of HandleXXX to r0
ldr r0,[r0] ;load the contents(service routine start address) of HandleXXX
str r0,[sp,#4] ;store the contents(ISR) of HandleXXX to stack
ldmfd sp!,{r0,pc} ;POP the work register and pc(jump to ISR)
MEND IMPORT |Image$$ER_ROM1$$RO$$Base| ; Base of ROM code
IMPORT |Image$$ER_ROM1$$RO$$Limit| ; End of ROM code (=start of ROM data)
IMPORT |Image$$RW_RAM1$$RW$$Base| ; Base of RAM to initialise
IMPORT |Image$$RW_RAM1$$ZI$$Base| ; Base and limit of area
IMPORT |Image$$RW_RAM1$$ZI$$Limit| ; to zero initialise IMPORT MMU_SetAsyncBusMode
IMPORT MMU_SetFastBusMode ; IMPORT Main ; The main entry of mon program
IMPORT RdNF2SDRAM ; Copy Image from Nand Flash to SDRAM AREA RESET,CODE,READONLY
PRESERVE8 ;8 字对齐 ENTRY EXPORT __ENTRY
__ENTRY
ResetEntry
;1)The code, which converts to Big-endian, should be in little endian code.
;2)The following little endian code will be compiled in Big-Endian mode.
; The code byte order should be changed as the memory bus width.
;3)The pseudo instruction,DCD can not be used here because the linker generates error.
ASSERT :DEF:ENDIAN_CHANGE
[ ENDIAN_CHANGE
ASSERT :DEF:ENTRY_BUS_WIDTH
[ ENTRY_BUS_WIDTH=32
b ChangeBigEndian ;DCD 0xea000007
] [ ENTRY_BUS_WIDTH=16
andeq r14,r7,r0,lsl #20 ;DCD 0x0007ea00
] [ ENTRY_BUS_WIDTH=8
streq r0,[r0,-r10,ror #1] ;DCD 0x070000ea
]
|
b ResetHandler
]
b HandlerUndef ;handler for Undefined mode
b HandlerSWI ;handler for SWI interrupt
b HandlerPabort ;handler for PAbort
b HandlerDabort ;handler for DAbort
b . ;reserved
b HandlerIRQ ;handler for IRQ interrupt
b HandlerFIQ ;handler for FIQ interrupt ;@0x20
b EnterPWDN ; Must be @0x20.
ChangeBigEndian
;@0x24
[ ENTRY_BUS_WIDTH=32
DCD 0xee110f10 ;0xee110f10 => mrc p15,0,r0,c1,c0,0
DCD 0xe3800080 ;0xe3800080 => orr r0,r0,#0x80; //Big-endian
DCD 0xee010f10 ;0xee010f10 => mcr p15,0,r0,c1,c0,0
]
[ ENTRY_BUS_WIDTH=16
DCD 0x0f10ee11
DCD 0x0080e380
DCD 0x0f10ee01
]
[ ENTRY_BUS_WIDTH=8
DCD 0x100f11ee
DCD 0x800080e3
DCD 0x100f01ee
]
DCD 0xffffffff ;swinv 0xffffff is similar with NOP and run well in both endian mode.
DCD 0xffffffff
DCD 0xffffffff
DCD 0xffffffff
DCD 0xffffffff
b ResetHandler HandlerFIQ HANDLER HandleFIQ
HandlerIRQ HANDLER HandleIRQ
HandlerUndef HANDLER HandleUndef
HandlerSWI HANDLER HandleSWI
HandlerDabort HANDLER HandleDabort
HandlerPabort HANDLER HandlePabort IsrIRQ
sub sp,sp,#4 ;reserved for PC
stmfd sp!,{r8-r9} ldr r9,=INTOFFSET
ldr r9,[r9]
ldr r8,=HandleEINT0
add r8,r8,r9,lsl #2
ldr r8,[r8]
str r8,[sp,#8]
ldmfd sp!,{r8-r9,pc} LTORG ;=======
; ENTRY
;=======
ResetHandler
ldr r0,=WTCON ;watch dog disable
ldr r1,=0x0
str r1,[r0] ldr r0,=INTMSK
ldr r1,=0xffffffff ;all interrupt disable
str r1,[r0] ldr r0,=INTSUBMSK
ldr r1,=0x7fff ;all sub interrupt disable
str r1,[r0] [ {FALSE}
; GPBDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4);
; Led_Display
ldr r0,=GPBCON
ldr r1,=0x00555555
str r1,[r0]
ldr r0,=GPBDAT
ldr r1,=0x07fe
str r1,[r0]
] ;To reduce PLL lock time, adjust the LOCKTIME register.
ldr r0,=LOCKTIME
ldr r1,=0xffffff
str r1,[r0] [ PLL_ON_START
; Added for confirm clock divide. for 2440.
; Setting value Fclk:Hclk:Pclk
ldr r0,=CLKDIVN
ldr r1,=CLKDIV_VAL ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4, 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6.
str r1,[r0] ;program has not been copied, so use these directly
[ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1.
mrc p15,0,r0,c1,c0,0
orr r0,r0,#0xc0000000;R1_nF:OR:R1_iA
mcr p15,0,r0,c1,c0,0
|
mrc p15,0,r0,c1,c0,0
bic r0,r0,#0xc0000000;R1_iA:OR:R1_nF
mcr p15,0,r0,c1,c0,0
] ;Configure UPLL
ldr r0,=UPLLCON
ldr r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV) ;Fin = 12.0MHz, UCLK = 48MHz
str r1,[r0]
nop ; Caution: After UPLL setting, at least 7-clocks delay must be inserted for setting hardware be completed.
nop
nop
nop
nop
nop
nop
;Configure MPLL
ldr r0,=MPLLCON
ldr r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV) ;Fin = 12.0MHz, FCLK = 400MHz
str r1,[r0]
] ;Check if the boot is caused by the wake-up from SLEEP mode.
ldr r1,=GSTATUS2
ldr r0,[r1]
tst r0,#0x2
;In case of the wake-up from SLEEP mode, go to SLEEP_WAKEUP handler.
bne WAKEUP_SLEEP EXPORT StartPointAfterSleepWakeUp
StartPointAfterSleepWakeUp ;Set memory control registers
adrl r0,SMRDATA
ldr r1,=BWSCON ;BWSCON Address
add r2, r0, #52 ;End address of SMRDATA 0
ldr r3, [r0], #4
str r3, [r1], #4
cmp r2, r0
bne %B0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;; When EINT0 is pressed, Clear SDRAM
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; check if EIN0 button is pressed ldr r0,=GPFCON
ldr r1,=0x0
str r1,[r0]
ldr r0,=GPFUP
ldr r1,=0xff
str r1,[r0] ldr r1,=GPFDAT
ldr r0,[r1]
bic r0,r0,#(0x1e<<1) ; bit clear
tst r0,#0x1
bne %F1 ; Clear SDRAM Start ldr r0,=GPFCON
ldr r1,=0x55aa
str r1,[r0]
ldr r0,=GPFDAT
ldr r1,=0x0
str r1,[r0] ;LED=**** mov r1,#0
mov r2,#0
mov r3,#0
mov r4,#0
mov r5,#0
mov r6,#0
mov r7,#0
mov r8,#0 ldr r9,=0x4000000 ;64MB
ldr r0,=0x30000000
0
stmia r0!,{r1-r8}
subs r9,r9,#32
bne %B0 ;Clear SDRAM End 1 ;Initialize stacks
bl InitStacks ;=========================================================== ldr r0, =BWSCON
ldr r0, [r0]
ands r0, r0, #6 ;OM[1:0] != 0, NOR FLash boot
bne copy_proc_beg ;do not read nand flash
adr r0, ResetEntry ;OM[1:0] == 0, NAND FLash boot
cmp r0, #0 ;if use Multi-ice,
bne copy_proc_beg ;do not read nand flash for boot
;nop
;===========================================================
nand_boot_beg
[ {TRUE}
bl RdNF2SDRAM
] ldr pc, =copy_proc_beg
;===========================================================
copy_proc_beg
adr r0, ResetEntry
ldr r2, BaseOfROM
cmp r0, r2
ldreq r0, TopOfROM
beq InitRam
ldr r3, TopOfROM
0
ldmia r0!, {r4-r7}
stmia r2!, {r4-r7}
cmp r2, r3
bcc %B0 sub r2, r2, r3
sub r0, r0, r2 InitRam
ldr r2, BaseOfBSS
ldr r3, BaseOfZero
0
cmp r2, r3
ldrcc r1, [r0], #4
strcc r1, [r2], #4
bcc %B0 mov r0, #0
ldr r3, EndOfBSS
1
cmp r2, r3
strcc r0, [r2], #4
bcc %B1 ldr pc, =%F2 ;goto compiler address
2 ; [ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1.
; bl MMU_SetAsyncBusMode
; |
; bl MMU_SetFastBusMode ; default value.
; ] ;===========================================================
; Setup IRQ handler
ldr r0,=HandleIRQ ;This routine is needed
ldr r1,=IsrIRQ ;if there is not 'subs pc,lr,#4' at 0x18, 0x1c
str r1,[r0] [ :LNOT:THUMBCODE
bl Main ;Do not use main() because ......
b .
] [ THUMBCODE ;for start-up code for Thumb mode
orr lr,pc,#1
bx lr
CODE16
bl Main ;Do not use main() because ......
b .
CODE32
] ;function initializing stacks
InitStacks
;Do not use DRAM,such as stmfd,ldmfd......
;SVCstack is initialized before
;Under toolkit ver 2.5, 'msr cpsr,r1' can be used instead of 'msr cpsr_cxsf,r1'
mrs r0,cpsr
bic r0,r0,#MODEMASK
orr r1,r0,#UNDEFMODE:OR:NOINT
msr cpsr_cxsf,r1 ;UndefMode
ldr sp,=UndefStack ; UndefStack=0x33FF_5C00 orr r1,r0,#ABORTMODE:OR:NOINT
msr cpsr_cxsf,r1 ;AbortMode
ldr sp,=AbortStack ; AbortStack=0x33FF_6000 orr r1,r0,#IRQMODE:OR:NOINT
msr cpsr_cxsf,r1 ;IRQMode
ldr sp,=IRQStack ; IRQStack=0x33FF_7000 orr r1,r0,#FIQMODE:OR:NOINT
msr cpsr_cxsf,r1 ;FIQMode
ldr sp,=FIQStack ; FIQStack=0x33FF_8000 bic r0,r0,#MODEMASK:OR:NOINT
orr r1,r0,#SVCMODE
msr cpsr_cxsf,r1 ;SVCMode
ldr sp,=SVCStack ; SVCStack=0x33FF_5800 ;USER mode has not be initialized. mov pc,lr
;The LR register will not be valid if the current mode is not SVC mode. LTORG SMRDATA DATA
; Memory configuration should be optimized for best performance
; The following parameter is not optimized.
; Memory access cycle parameter strategy
; 1) The memory settings is safe parameters even at HCLK=75Mhz.
; 2) SDRAM refresh period is for HCLK<=75Mhz. DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+(B6_BWSCON<<24)+(B7_BWSCON<<28))
DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+(B0_PMC)) ;GCS0
DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+(B1_PMC)) ;GCS1
DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+(B2_PMC)) ;GCS2
DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+(B3_PMC)) ;GCS3
DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+(B4_PMC)) ;GCS4
DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+(B5_PMC)) ;GCS5
DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN)) ;GCS6
DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN)) ;GCS7
DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Tsrc<<18)+(Tchr<<16)+REFCNT) DCD 0x32 ;SCLK power saving mode, BANKSIZE 128M/128M DCD 0x30 ;MRSR6 CL=3clk
DCD 0x30 ;MRSR7 CL=3clk BaseOfROM DCD |Image$$ER_ROM1$$RO$$Base|
TopOfROM DCD |Image$$ER_ROM1$$RO$$Limit|
BaseOfBSS DCD |Image$$RW_RAM1$$RW$$Base|
BaseOfZero DCD |Image$$RW_RAM1$$ZI$$Base|
EndOfBSS DCD |Image$$RW_RAM1$$ZI$$Limit| ALIGN ;Function for entering power down mode
; 1. SDRAM should be in self-refresh mode.
; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh.
; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh.
; 4. The I-cache may have to be turned on.
; 5. The location of the following code may have not to be changed. ;void EnterPWDN(int CLKCON);
EnterPWDN
mov r2,r0 ;r2=rCLKCON
tst r0,#0x8 ;SLEEP mode?
bne ENTER_SLEEP ENTER_STOP
ldr r0,=REFRESH
ldr r3,[r0] ;r3=rREFRESH
mov r1, r3
orr r1, r1, #BIT_SELFREFRESH
str r1, [r0] ;Enable SDRAM self-refresh mov r1,#16 ;wait until self-refresh is issued. may not be needed.
0 subs r1,r1,#1
bne %B0 ldr r0,=CLKCON ;enter STOP mode.
str r2,[r0] mov r1,#32
0 subs r1,r1,#1 ;1) wait until the STOP mode is in effect.
bne %B0 ;2) Or wait here until the CPU&Peripherals will be turned-off
; Entering SLEEP mode, only the reset by wake-up is available. ldr r0,=REFRESH ;exit from SDRAM self refresh mode.
str r3,[r0] MOV_PC_LR ENTER_SLEEP
;NOTE.
;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode. ldr r0,=REFRESH
ldr r1,[r0] ;r1=rREFRESH
orr r1, r1, #BIT_SELFREFRESH
str r1, [r0] ;Enable SDRAM self-refresh mov r1,#16 ;Wait until self-refresh is issued,which may not be needed.
0 subs r1,r1,#1
bne %B0 ldr r1,=MISCCR
ldr r0,[r1]
orr r0,r0,#(7<<17) ;Set SCLK0=0, SCLK1=0, SCKE=0.
str r0,[r1] ldr r0,=CLKCON ; Enter sleep mode
str r2,[r0] b . ;CPU will die here. WAKEUP_SLEEP
;Release SCLKn after wake-up from the SLEEP mode.
ldr r1,=MISCCR
ldr r0,[r1]
bic r0,r0,#(7<<17) ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE.
str r0,[r1] ;Set memory control registers
ldr r0,=SMRDATA
ldr r1,=BWSCON ;BWSCON Address
add r2, r0, #52 ;End address of SMRDATA
0
ldr r3, [r0], #4
str r3, [r1], #4
cmp r2, r0
bne %B0 mov r1,#256
0 subs r1,r1,#1 ;1) wait until the SelfRefresh is released.
bne %B0 ldr r1,=GSTATUS3 ;GSTATUS3 has the start address just after SLEEP wake-up
ldr r0,[r1] mov pc,r0 ;=====================================================================
; Clock division test
; Assemble code, because VSYNC time is very short
;=====================================================================
EXPORT CLKDIV124
EXPORT CLKDIV144 CLKDIV124 ldr r0, = CLKDIVN
ldr r1, = 0x3 ; 0x3 = 1:2:4
str r1, [r0]
; wait until clock is stable
nop
nop
nop
nop
nop ldr r0, = REFRESH
ldr r1, [r0]
bic r1, r1, #0xff
bic r1, r1, #(0x7<<8)
orr r1, r1, #0x470 ; REFCNT135
str r1, [r0]
nop
nop
nop
nop
nop
mov pc, lr CLKDIV144
ldr r0, = CLKDIVN
ldr r1, = 0x4 ; 0x4 = 1:4:4
str r1, [r0]
; wait until clock is stable
nop
nop
nop
nop
nop ldr r0, = REFRESH
ldr r1, [r0]
bic r1, r1, #0xff
bic r1, r1, #(0x7<<8)
orr r1, r1, #0x630 ; REFCNT675 - 1520
str r1, [r0]
nop
nop
nop
nop
nop
mov pc, lr ALIGN AREA RamData, DATA, READWRITE ^ _ISR_STARTADDRESS ; _ISR_STARTADDRESS=0x33FF_FF00
HandleReset # 4
HandleUndef # 4
HandleSWI # 4
HandlePabort # 4
HandleDabort # 4
HandleReserved # 4
HandleIRQ # 4
HandleFIQ # 4 ;Do not use the label 'IntVectorTable',
;The value of IntVectorTable is different with the address you think it may be.
;IntVectorTable
;@0x33FF_FF20
HandleEINT0 # 4
HandleEINT1 # 4
HandleEINT2 # 4
HandleEINT3 # 4
HandleEINT4_7 # 4
HandleEINT8_23 # 4
HandleCAM # 4 ; Added for 2440.
HandleBATFLT # 4
HandleTICK # 4
HandleWDT # 4
HandleTIMER0 # 4
HandleTIMER1 # 4
HandleTIMER2 # 4
HandleTIMER3 # 4
HandleTIMER4 # 4
HandleUART2 # 4
;@0x33FF_FF60
HandleLCD # 4
HandleDMA0 # 4
HandleDMA1 # 4
HandleDMA2 # 4
HandleDMA3 # 4
HandleMMC # 4
HandleSPI0 # 4
HandleUART1 # 4
HandleNFCON # 4 ; Added for 2440.
HandleUSBD # 4
HandleUSBH # 4
HandleIIC # 4
HandleUART0 # 4
HandleSPI1 # 4
HandleRTC # 4
HandleADC # 4
;@0x33FF_FFA0
END