强化学习(七)时序差分离线控制算法Q-Learning

时间:2022-01-29 00:20:23

    在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learning算法。

    Q-Learning这一篇对应Sutton书的第六章部分和UCL强化学习课程的第五讲部分。

1. Q-Learning算法的引入    

    Q-Learning算法是一种使用时序差分求解强化学习控制问题的方法,回顾下此时我们的控制问题可以表示为:给定强化学习的5个要素:状态集$S$, 动作集$A$, 即时奖励$R$,衰减因子$\gamma$, 探索率$\epsilon$, 求解最优的动作价值函数$q_{*}$和最优策略$\pi_{*}$。

    这一类强化学习的问题求解不需要环境的状态转化模型,是不基于模型的强化学习问题求解方法。对于它的控制问题求解,和蒙特卡罗法类似,都是价值迭代,即通过价值函数的更新,来更新策略,通过策略来产生新的状态和即时奖励,进而更新价值函数。一直进行下去,直到价值函数和策略都收敛。

    再回顾下时序差分法的控制问题,可以分为两类,一类是在线控制,即一直使用一个策略来更新价值函数和选择新的动作,比如我们上一篇讲到的SARSA, 而另一类是离线控制,会使用两个控制策略,一个策略用于选择新的动作,另一个策略用于更新价值函数。这一类的经典算法就是Q-Learning。

    对于Q-Learning,我们会使用$\epsilon-$贪婪法来选择新的动作,这部分和SARSA完全相同。但是对于价值函数的更新,Q-Learning使用的是贪婪法,而不是SARSA的$\epsilon-$贪婪法。这一点就是SARSA和Q-Learning本质的区别。

2. Q-Learning算法概述

    Q-Learning算法的拓补图入下图所示:

强化学习(七)时序差分离线控制算法Q-Learning

    首先我们基于状态$S$,用$\epsilon-$贪婪法选择到动作$A$, 然后执行动作$A$,得到奖励$R$,并进入状态$S'$,此时,如果是SARSA,会继续基于状态$S'$,用$\epsilon-$贪婪法选择$A'$,然后来更新价值函数。但是Q-Learning则不同。

    对于Q-Learning,它基于状态$S'$,没有使用$\epsilon-$贪婪法选择$A'$,而是使用贪婪法选择$A'$,也就是说,选择使$Q(S',a)$最大的$a$作为$A'$来更新价值函数。用数学公式表示就是:$$Q(S,A) = Q(S,A) + \alpha(R+\gamma \max_aQ(S',a) - Q(S,A))$$

    对应到上图中就是在图下方的三个黑圆圈动作中选择一个使$Q(S',a)$最大的动作作为$A'$。

    此时选择的动作只会参与价值函数的更新,不会真正的执行。价值函数更新后,新的执行动作需要基于状态$S'$,用$\epsilon-$贪婪法重新选择得到。这一点也和SARSA稍有不同。对于SARSA,价值函数更新使用的$A'$会作为下一阶段开始时候的执行动作。

    下面我们对Q-Learning算法做一个总结。

3. Q-Learning算法流程

    下面我们总结下Q-Learning算法的流程。

    算法输入:迭代轮数$T$,状态集$S$, 动作集$A$, 步长$\alpha$,衰减因子$\gamma$, 探索率$\epsilon$,

    输出:所有的状态和动作对应的价值$Q$

    1. 随机初始化所有的状态和动作对应的价值$Q$. 对于终止状态其$Q$值初始化为0.

    2. for i from 1 to T,进行迭代。

      a) 初始化S为当前状态序列的第一个状态。

      b) 用$\epsilon-$贪婪法在当前状态$S$选择出动作$A$

      c) 在状态$S$执行当前动作$A$,得到新状态$S'$和奖励$R$

      d)  更新价值函数$Q(S,A)$:$$Q(S,A) + \alpha(R+\gamma \max_aQ(S',a) - Q(S,A))$$

      e) $S=S'$

      f) 如果$S'$是终止状态,当前轮迭代完毕,否则转到步骤b)

4. Q-Learning算法实例:Windy GridWorld

    我们还是使用和SARSA一样的例子来研究Q-Learning。如果对windy gridworld的问题还不熟悉,可以复习强化学习(六)时序差分在线控制算法SARSA第4节的第二段。

    完整的代码参见我的github: https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/q_learning_windy_world.py

    绝大部分代码和SARSA是类似的。这里我们可以重点比较和SARSA不同的部分。区别都在episode这个函数里面。

    首先是初始化的时候,我们只初始化状态$S$,把$A$的产生放到了while循环里面, 而回忆下SARSA会同时初始化状态$S$和动作$A$,再去执行循环。下面这段Q-Learning的代码对应我们算法的第二步步骤a和b:

# play for an episode
def episode(q_value):
# track the total time steps in this episode
time = 0 # initialize state
state = START while state != GOAL:
# choose an action based on epsilon-greedy algorithm
if np.random.binomial(1, EPSILON) == 1:
action = np.random.choice(ACTIONS)
else:
values_ = q_value[state[0], state[1], :]
action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)])

    接着我们会去执行动作$A$,得到$S'$, 由于奖励不是终止就是-1,不需要单独计算。,这部分和SARSA的代码相同。对应我们Q-Learning算法的第二步步骤c:

        next_state = step(state, action)
def step(state, action):
i, j = state
if action == ACTION_UP:
return [max(i - 1 - WIND[j], 0), j]
elif action == ACTION_DOWN:
return [max(min(i + 1 - WIND[j], WORLD_HEIGHT - 1), 0), j]
elif action == ACTION_LEFT:
return [max(i - WIND[j], 0), max(j - 1, 0)]
elif action == ACTION_RIGHT:
return [max(i - WIND[j], 0), min(j + 1, WORLD_WIDTH - 1)]
else:
assert False

    后面我们用贪婪法选择出最大的$Q(S',a)$,并更新价值函数,最后更新当前状态$S$。对应我们Q-Learning算法的第二步步骤d,e。注意SARSA这里是使用$\epsilon-$贪婪法,而不是贪婪法。同时SARSA会同时更新状态$S$和动作$A$,而Q-Learning只会更新当前状态$S$。

        values_ = q_value[next_state[0], next_state[1], :]
next_action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)]) # Sarsa update
q_value[state[0], state[1], action] += \
ALPHA * (REWARD + q_value[next_state[0], next_state[1], next_action] -
q_value[state[0], state[1], action])
state = next_state

    跑完完整的代码,大家可以很容易得到这个问题的最优解,进而得到在每个格子里的最优贪婪策略。

5. SARSA vs Q-Learning

    现在SARSA和Q-Learning算法我们都讲完了,那么作为时序差分控制算法的两种经典方法吗,他们都有说明特点,各自适用于什么样的场景呢?

    Q-Learning直接学习的是最优策略,而SARSA在学习最优策略的同时还在做探索。这导致我们在学习最优策略的时候,如果用SARSA,为了保证收敛,需要制定一个策略,使$\epsilon-$贪婪法的超参数$\epsilon$在迭代的过程中逐渐变小。Q-Learning没有这个烦恼。

    另外一个就是Q-Learning直接学习最优策略,但是最优策略会依赖于训练中产生的一系列数据,所以受样本数据的影响较大,因此受到训练数据方差的影响很大,甚至会影响Q函数的收敛。Q-Learning的深度强化学习版Deep Q-Learning也有这个问题。

    在学习过程中,SARSA在收敛的过程中鼓励探索,这样学习过程会比较平滑,不至于过于激进,导致出现像Q-Learning可能遇到一些特殊的最优“陷阱”。比如经典的强化学习问题"Cliff Walk"。

    在实际应用中,如果我们是在模拟环境中训练强化学习模型,推荐使用Q-Learning,如果是在线生产环境中训练模型,则推荐使用SARSA。

6. Q-Learning结语        

    对于Q-Learning和SARSA这样的时序差分算法,对于小型的强化学习问题是非常灵活有效的,但是在大数据时代,异常复杂的状态和可选动作,使Q-Learning和SARSA要维护的Q表异常的大,甚至远远超出内存,这限制了时序差分算法的应用场景。在深度学习兴起后,基于深度学习的强化学习开始占主导地位,因此从下一篇开始我们开始讨论深度强化学习的建模思路。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

强化学习(七)时序差分离线控制算法Q-Learning的更多相关文章

  1. 【转载】 强化学习(七)时序差分离线控制算法Q-Learning

    原文地址: https://www.cnblogs.com/pinard/p/9669263.html ------------------------------------------------ ...

  2. 强化学习(六)时序差分在线控制算法SARSA

    在强化学习(五)用时序差分法(TD)求解中,我们讨论了用时序差分来求解强化学习预测问题的方法,但是对控制算法的求解过程没有深入,本文我们就对时序差分的在线控制算法SARSA做详细的讨论. SARSA这 ...

  3. 【转载】 强化学习(六)时序差分在线控制算法SARSA

    原文地址: https://www.cnblogs.com/pinard/p/9614290.html ------------------------------------------------ ...

  4. 强化学习8-时序差分控制离线算法Q-Learning

    Q-Learning和Sarsa一样是基于时序差分的控制算法,那两者有什么区别呢? 这里已经必须引入新的概念 时序差分控制算法的分类:在线和离线 在线控制算法:一直使用一个策略选择动作和更新价值函数, ...

  5. 强化学习4-时序差分TD

    之前讲到强化学习在不基于模型时可以用蒙特卡罗方法求解,但是蒙特卡罗方法需要在每次采样时生产完整序列,而在现实中,我们很可能无法生成完整序列,那么又该如何解决这类强化学习问题呢? 由贝尔曼方程 vπ(s ...

  6. 强化学习七 - Policy Gradient Methods

    一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的ac ...

  7. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  8. 强化学习之 免模型学习(model-free based learning)

    强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...

  9. Flink &plus; 强化学习 搭建实时推荐系统

    如今的推荐系统,对于实时性的要求越来越高,实时推荐的流程大致可以概括为这样: 推荐系统对于用户的请求产生推荐,用户对推荐结果作出反馈 (购买/点击/离开等等),推荐系统再根据用户反馈作出新的推荐.这个 ...

随机推荐

  1. java socket编程(li)

    一.网络编程中两个主要的问题 一个是如何准确的定位网络上一台或多台主机,另一个就是找到主机后如何可靠高效的进行数据传输.在TCP/IP协议中IP层主要负责网络主机的定位,数据传输的路由,由IP地址可以 ...

  2. 判断pc端还是移动,并给移动加上其它的样式文件方法

      所有移动端PC端 按 640 进行排版 body, html { width: %; height: %; overflow: hidden; background-color: #; } bod ...

  3. 分享一下我封装iOS自定义控件的体会,附上三个好用的控件Demo &lt&semi;时间选择器&amp&semi;多行输入框&amp&semi;日期选择器&gt&semi;

    前段时间有小伙伴问到我:"这样的控件该怎么做呢?",我感觉是个比较简单的控件,可能对于入行不久的同志思路没有很清晰吧.趁着最近工作不忙,就来这里分享一下我封装自定义控件的几点体会吧 ...

  4. &lbrack;改善Java代码&rsqb;不要主动进行垃圾回收

    建议51: 不要主动进行垃圾回收 很久很久以前,在Java 1.1的年代里,我们经常会看到System.gc这样的调用—主动对垃圾进行回收.不过,在Java知识深入人心后,这样的代码就逐渐销声匿迹了— ...

  5. &lbrack;转&rsqb; Linux strace 简介

    http://www.cnblogs.com/ggjucheng/archive/2012/01/08/2316692.html 简介 strace常用来跟踪进程执行时的系统调用和所接收的信号. 在L ...

  6. IDEA 2 的注册码

    43B4A73YYJ-eyJsaWNlbnNlSWQiOiI0M0I0QTczWVlKIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiI ...

  7. ps删除或覆盖内容

    除了选区删除.复制选区内容覆盖之外另外一种方法. 删掉字母"PS": 1. 矩形框选工具在字母上方画出选区 2. Ctrl+T,并拖拽底部以覆盖字母 3. 完成

  8. 你不知道的JavaScript--Item23 定时器的合理使用

    1.定时器概述 window对象提供了两个方法来实现定时器的效果,分别是window.setTimeout()和window.setInterval.其中前者可以使一段代码在指定时间后运行:而后者则可 ...

  9. QT Graphics-View 3D编程例子- 3D Model Viewer

    学习在Graphics-View框架中使用opengl进行3D编程,在网上找了一个不错的例子“3D Model Viewer”,很值得学习. 可以在http://www.oyonale.com/acc ...

  10. ospf精确宣告地址

    ospf的一点小问题 http://bbs.51cto.com/thread-881459-1.html 参照博客地址 network 172.20.1.0 0.0.0.3 area 0 networ ...