基于mykernel的时间片轮转调度

时间:2023-03-09 16:33:00
基于mykernel的时间片轮转调度

学号: 363

原创作品,转载请注明出处。
本实验资源来源: https://github.com/mengning/linuxkernel/

一、 实验环境配置

本次实验在实验楼完成:

在实验楼的终端下输入下面命令:

cd LinuxKernel/linux-3.9.
rm -rf mykernel
patch -p1 < ../mykernel_for_linux3..4sc.patch
make allnoconfig
make
qemu -kernel arch/x86/boot/bzImage

可查看运行结果:

基于mykernel的时间片轮转调度

关闭qemu窗口,进入mykernel文件夹,可以查看mymain.c和myinterrupt.c文件。

基于mykernel的时间片轮转调度

mymain.c的代码不断循环的去执行,周期性的产生时钟中断信号,去执行myinterrupt.c的代码。

二、实现时间片轮转多道程序

将mymain.c,myinterrupt.c,mypcb.h三个文件复制替换到mykernel文件夹下。

运行如下:

基于mykernel的时间片轮转调度

可以看到进程1切换到了进程2。

三、时间片轮转多道程序的代码分析

mypcb.h

/*
* linux/mykernel/mypcb.h
*
* Kernel internal PCB types
*
* Copyright (C) 2013 Mengning
*
*/ #define MAX_TASK_NUM 4
#define KERNEL_STACK_SIZE 1024*2 # unsigned long
/* CPU-specific state of this task */
struct Thread {
unsigned long ip;
unsigned long sp;
}; typedef struct PCB{
int pid;
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
unsigned long stack[KERNEL_STACK_SIZE];
/* CPU-specific state of this task */
struct Thread thread;
unsigned long task_entry;
struct PCB *next;
}tPCB; void my_schedule(void);

可以看到最大进程数定义为四个,程序控制块PCB中定义了pid,状态statue,线程thread,进程入口函数task_entry等.

mymain.c文件

/*
* linux/mykernel/mymain.c
*
* Kernel internal my_start_kernel
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = ; void my_process(void); void __init my_start_kernel(void)
{
int pid = ;
int i;
/* Initialize process 0*/
task[pid].pid = pid;
task[pid].state = ;/* -1 unrunnable, 0 runnable, >0 stopped */
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-];
task[pid].next = &task[pid];
/*fork more process */
for(i=;i<MAX_TASK_NUM;i++)
{
memcpy(&task[i],&task[],sizeof(tPCB));
task[i].pid = i;
//*(&task[i].stack[KERNEL_STACK_SIZE-1] - 1) = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-]);
task[i].next = task[i-].next;
task[i-].next = &task[i];
}
/* start process 0 by task[0] */
pid = ;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */
"pushl %1\n\t" /* push ebp */
"pushl %0\n\t" /* push task[pid].thread.ip */
"ret\n\t" /* pop task[pid].thread.ip to eip */
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
);
} int i = ; void my_process(void)
{
while()
{
i++;
if(i% == )
{
printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
if(my_need_sched == )
{
my_need_sched = ;
my_schedule();
}
printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
}
}
}

在这个文件中void __init my_start_kernel(void)这个函数fork了4个新进程,把新fork的进程加入到进程链表在这个文件中。
汇编过程如下:
(1)将0号进程的esp的值赋给ESP寄存器
(2)将0号进程的esp的值压栈(此时堆栈状态为进程0的堆栈)
(3)将0号进程的eip的值压栈
(4)通过ret指令,让栈顶的eip的值出栈到EIP寄存器中(间接改变EIP寄存器的值),完成进程0的启动

myinterupt.c

/*
* linux/mykernel/myinterrupt.c
*
* Kernel internal my_timer_handler
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = ; /*
* Called by timer interrupt.
* it runs in the name of current running process,
* so it use kernel stack of current running process
*/
void my_timer_handler(void)
{
#if 1
if(time_count% == && my_need_sched != )
{
printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
my_need_sched = ;
}
time_count ++ ;
#endif
return;
} void my_schedule(void)
{
tPCB * next;
tPCB * prev; if(my_current_task == NULL
|| my_current_task->next == NULL)
{
return;
}
printk(KERN_NOTICE ">>>my_schedule<<<\n");
/* schedule */
next = my_current_task->next;
prev = my_current_task;
if(next->state == )/* -1 unrunnable, 0 runnable, >0 stopped */
{
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
/* switch to next process */
asm volatile(
"pushl %%ebp\n\t" /* save ebp */
"movl %%esp,%0\n\t" /* save esp */
"movl %2,%%esp\n\t" /* restore esp */
"movl $1f,%1\n\t" /* save eip */
"pushl %3\n\t"
"ret\n\t" /* restore eip */
"1:\t" /* next process start here */
"popl %%ebp\n\t"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}

通过my_time_handler()函数定时地不断向cpu发出中断,从而实现了时间片轮转。每调用1000次,就去将全局变量my_need_sched的值修改为1,通知正在执行的进程执行调度程序my_schedule。从而在my_schedule函数中完成进程的不断切换。

四、总结

(1)进程和中断在操作系统是是非常重要的两个部分,需要熟练掌握。
(2)EIP寄存器储存着当前执行的代码,可以通过更改EIP寄存器的值来更改当前执行的代码,从而实现进程切换。出于安全考虑,EIP寄存器的值不能被直接改变,但可以通过压栈+ret指令来间接改变。
(3)进程在执行过程中,当时间片用完之后需要进程切换时,需要保存当前的执行上下文环境,下次被调度的时候,需要回复进程的上下文环境。