每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和。
设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数。
枚举左右子树大小,则有f[n]=Σ{[f[i]+(g[i]+h[i]*i)·(n-i)]·h[n-i-1]+[f[n-i-1]+(g[n-i-1]+h[n-i-1]*(n-i-1))·(i+1)]·h[i]}·C(n-1,i),即对两棵子树分别统计贡献,C(n-1,i)即给左右子树分配编号。g[n]=Σ[(g[i]+h[i]*i)·h[n-i-1]+(g[n-i-1]+h[n-i-1]*(n-i-1))·h[i]]·C(n-1,i),h[n]=Σh[i]·h[n-i-1]·C(n-1,i),比较显然。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,P,C[N][N],f[N],g[N],h[N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5305.in","r",stdin);
freopen("bzoj5305.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),P=read();
C[][]=;
for (int i=;i<=n;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
f[]=g[]=;h[]=;
for (int i=;i<=n;i++)
{
for (int j=;j<i;j++)
inc(h[i],1ll*h[j]*h[i-j-]%P*C[i-][j]%P);
for (int j=;j<i;j++)
inc(g[i],((g[j]+1ll*j*h[j])%P*h[i-j-]+(g[i-j-]+1ll*(i-j-)*h[i-j-])%P*h[j])%P*C[i-][j]%P);
for (int j=;j<i;j++)
inc(f[i],((f[j]+(g[j]+1ll*j*h[j])%P*(i-j))%P*h[i-j-]+(f[i-j-]+(g[i-j-]+1ll*(i-j-)*h[i-j-])%P*(j+))%P*h[j])%P*C[i-][j]%P);
}
cout<<f[n];
return ;
}