select与epoll分析

时间:2023-03-09 00:37:12
select与epoll分析

  关于select与epoll的区别,网上的文章已是一大堆。不过别人的终究是别人的,总得自己去理解才更深刻。于是在阅读了大量的文章后,再装模作样的看下源码,写下了自己的一些理解。

  在开始之前,要明白linux中分用户空间、内核空间,这相当于两块不能直接相互访问的内存。而用户程序要访问设备,包括网络、读写文件,都需要调用内核的相关函数。而调用内核相关函数,则往往需要从用户空间往内核拷贝一些数据,反之亦然。当调用非常频繁,这个拷贝的消耗也是不能忽略的。具体请参考:http://www.kerneltravel.net/jiaoliu/005.htm

  select相关函数的源代码http://lxr.free-electrons.com/source/fs/select.c

  epoll相关函数的源代码http://lxr.free-electrons.com/source/fs/eventpoll.c

  • select过程
  1. select函数为入口,完成超时结构体的copy,并调用core_sys_select处理文件描述符
SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp,
fd_set __user *, exp, struct timeval __user *, tvp)
{
struct timespec end_time, *to = NULL;
struct timeval tv;
int ret; if (tvp) { /* 如果设置了超时,则需要将时间结构体从用户空间拷贝到内核空间 */
if (copy_from_user(&tv, tvp, sizeof(tv)))
return -EFAULT; to = &end_time; /* 格式化时间到结构体to中 */
if (poll_select_set_timeout(to,
tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
(tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
return -EINVAL;
} ret = core_sys_select(n, inp, outp, exp, to); /* 拷贝文件描述符集合,然后调用do_select */
ret = poll_select_copy_remaining(&end_time, tvp, , ret);/* 把处理后超时信息拷贝到用户空间 */ return ret;
}
  1. core_sys_select将文件描述符copy到内核空间,调用do_select进行处理,完成后再拷贝回用户空间
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec *end_time)
{
fd_set_bits fds;
void *bits;
int ret, max_fds;
unsigned int size;
struct fdtable *fdt;
/* Allocate small arguments on the stack to save memory and be faster */
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)]; ret = -EINVAL;
if (n < )
goto out_nofds; /* max_fds can increase, so grab it once to avoid race */
rcu_read_lock();
fdt = files_fdtable(current->files);
max_fds = fdt->max_fds;
rcu_read_unlock();
if (n > max_fds)
n = max_fds; /*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
size = FDS_BYTES(n);
bits = stack_fds;
if (size > sizeof(stack_fds) / ) {
/* Not enough space in on-stack array; must use kmalloc */
ret = -ENOMEM;
bits = kmalloc( * size, GFP_KERNEL);
if (!bits)
goto out_nofds;
}
fds.in = bits;
fds.out = bits + size;
fds.ex = bits + *size;
fds.res_in = bits + *size;
fds.res_out = bits + *size;
fds.res_ex = bits + *size; /* get_fd_set只是将文件描述符从用户空间拷贝到内核空间 */ if ((ret = get_fd_set(n, inp, fds.in)) ||
(ret = get_fd_set(n, outp, fds.out)) ||
(ret = get_fd_set(n, exp, fds.ex)))
goto out;
zero_fd_set(n, fds.res_in);
zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex); ret = do_select(n, &fds, end_time); if (ret < )
goto out;
if (!ret) {
ret = -ERESTARTNOHAND;
if (signal_pending(current))
goto out;
ret = ;
} /* get_fd_set只是将文件描述符从内核空间拷贝到用户空间 */
if (set_fd_set(n, inp, fds.res_in) ||
set_fd_set(n, outp, fds.res_out) ||
set_fd_set(n, exp, fds.res_ex))
ret = -EFAULT; out:
if (bits != stack_fds)
kfree(bits);
out_nofds:
return ret;
} int get_fd_set(unsigned long nr, void __user *ufdset, unsigned long *fdset)
{
nr = FDS_BYTES(nr);
if (ufdset)
return copy_from_user(fdset, ufdset, nr) ? -EFAULT : ; memset(fdset, , nr);
return ;
}
  1. do_select先设置设备事件唤醒函数,初始化等待队列,然后遍历所有文件描述符查找事件。如果找不到,进程休眠,直到被设备唤醒或超时,然后再去遍历所有文件描述符重新查找事件。
int do_select(int n, fd_set_bits *fds, struct timespec *end_time)
{
ktime_t expire, *to = NULL;
struct poll_wqueues table; /* 注意这是等待队列 */
poll_table *wait;
int retval, i, timed_out = ;
unsigned long slack = ;
unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : ;
unsigned long busy_end = ; rcu_read_lock();
retval = max_select_fd(n, fds);
rcu_read_unlock(); if (retval < )
return retval;
n = retval; /*
这里初始化队列信息,设置设备唤醒回调指针
当程序进入休眠后,如果设备有事件发生,根据回调指针唤醒当前进程
*/
poll_initwait(&table);
wait = &table.pt;
if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
wait->_qproc = NULL;
timed_out = ;
} if (end_time && !timed_out)
slack = select_estimate_accuracy(end_time); retval = ;
for (;;) { /* 循环,方便唤醒后重新遍历文件描述符查找事件 */
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
bool can_busy_loop = false; inp = fds->in; outp = fds->out; exp = fds->ex;
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex; /* 遍历所有的文件描述符,查找是否有文件描述符存在读写、异常事件 */
for (i = ; i < n; ++rinp, ++routp, ++rexp) {
unsigned long in, out, ex, all_bits, bit = , mask, j;
unsigned long res_in = , res_out = , res_ex = ; in = *inp++; out = *outp++; ex = *exp++;
all_bits = in | out | ex;
if (all_bits == ) {
i += BITS_PER_LONG;
continue;
} for (j = ; j < BITS_PER_LONG; ++j, ++i, bit <<= ) {
struct fd f;
if (i >= n)
break;
if (!(bit & all_bits))
continue;
f = fdget(i);
if (f.file) {
const struct file_operations *f_op;
f_op = f.file->f_op;
mask = DEFAULT_POLLMASK;
/* 如果找到对应的poll函数,找不到就是设备驱动没写好,socket对应的函数是sock_poll */
if (f_op->poll) {
wait_key_set(wait, in, out,
bit, busy_flag);
/* 得到当前设备状态,这里有wait,但不会阻塞。只是设置回调指针 */
mask = (*f_op->poll)(f.file, wait);
}
fdput(f); /* 下面按位检测事件 */
if ((mask & POLLIN_SET) && (in & bit)) {
res_in |= bit;
retval++;
wait->_qproc = NULL;
}
if ((mask & POLLOUT_SET) && (out & bit)) {
res_out |= bit;
retval++;
wait->_qproc = NULL;
}
if ((mask & POLLEX_SET) && (ex & bit)) {
res_ex |= bit;
retval++;
wait->_qproc = NULL;
}
/* got something, stop busy polling */
if (retval) {
can_busy_loop = false;
busy_flag = ; /*
* only remember a returned
* POLL_BUSY_LOOP if we asked for it
*/
} else if (busy_flag & mask)
can_busy_loop = true; }
}
if (res_in)
*rinp = res_in;
if (res_out)
*routp = res_out;
if (res_ex)
*rexp = res_ex;
cond_resched();
}
wait->_qproc = NULL;
/* 如果已经有结果,直接返回 */
if (retval || timed_out || signal_pending(current))
break;
if (table.error) {
retval = table.error;
break;
} /* only if found POLL_BUSY_LOOP sockets && not out of time */
if (can_busy_loop && !need_resched()) {
if (!busy_end) {
busy_end = busy_loop_end_time();
continue;
}
if (!busy_loop_timeout(busy_end))
continue;
}
busy_flag = ; /*
* If this is the first loop and we have a timeout
* given, then we convert to ktime_t and set the to
* pointer to the expiry value.
*/
if (end_time && !to) {
expire = timespec_to_ktime(*end_time);
to = &expire;
} if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE, /* 这里阻塞,直到超时 */
to, slack))
timed_out = ; /* 设置超时,上面为什么会用一个for(;;)就是为了超时后还去检查一次是否有事件 */
} poll_freewait(&table); return retval;
}
  • epoll过程
  1. epoll_create创建一个epoll结构,并初始化监听链表、就绪链表。其实这是创建一个文件,其内存位于内核空间上。这就相当于mmap一个文件了。
SYSCALL_DEFINE1(epoll_create1, int, flags)
{
int error, fd;
struct eventpoll *ep = NULL;
struct file *file; /* Check the EPOLL_* constant for consistency. */
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); if (flags & ~EPOLL_CLOEXEC)
return -EINVAL;
/*
* Create the internal data structure ("struct eventpoll").
*/
error = ep_alloc(&ep);
if (error < )
return error;
/*
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure and a free file descriptor.
*/
fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));/* 分配一个文件描述符 */
if (fd < ) {
error = fd;
goto out_free_ep;
}
file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
O_RDWR | (flags & O_CLOEXEC));
if (IS_ERR(file)) {
error = PTR_ERR(file);
goto out_free_fd;
}
ep->file = file;
fd_install(fd, file);
return fd; out_free_fd:
put_unused_fd(fd);
out_free_ep:
ep_free(ep);
return error;
} static int ep_alloc(struct eventpoll **pep)
{
int error;
struct user_struct *user;
struct eventpoll *ep; user = get_current_user();
error = -ENOMEM;
ep = kzalloc(sizeof(*ep), GFP_KERNEL); /* 在内核上分配一块内存 */
if (unlikely(!ep))
goto free_uid; spin_lock_init(&ep->lock);
mutex_init(&ep->mtx);
init_waitqueue_head(&ep->wq); /* 初始化监听文件描述符链表 */
init_waitqueue_head(&ep->poll_wait);
INIT_LIST_HEAD(&ep->rdllist); /* 初始化就绪链表 */
ep->rbr = RB_ROOT;
ep->ovflist = EP_UNACTIVE_PTR;
ep->user = user; *pep = ep; return ; free_uid:
free_uid(user);
return error;
}
  1. epoll_ctl来控制epoll结构。即负责epoll中监听链表的增、删、查、改。注意这里可能会产生一次用户空间到内核空间的拷贝。
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
struct epoll_event __user *, event)
{
int error;
int full_check = ;
struct fd f, tf;
struct eventpoll *ep;
struct epitem *epi;
struct epoll_event epds;
struct eventpoll *tep = NULL; error = -EFAULT;
if (ep_op_has_event(op) &&
copy_from_user(&epds, event, sizeof(struct epoll_event))) /* 这里可能会产生拷贝 */
goto error_return; error = -EBADF;
f = fdget(epfd);
if (!f.file)
goto error_return; /* Get the "struct file *" for the target file */
tf = fdget(fd);
if (!tf.file)
goto error_fput; /* The target file descriptor must support poll */
error = -EPERM;
if (!tf.file->f_op->poll)
goto error_tgt_fput; /* Check if EPOLLWAKEUP is allowed */
if (ep_op_has_event(op))
ep_take_care_of_epollwakeup(&epds); /*
* We have to check that the file structure underneath the file descriptor
* the user passed to us _is_ an eventpoll file. And also we do not permit
* adding an epoll file descriptor inside itself.
*/
error = -EINVAL;
if (f.file == tf.file || !is_file_epoll(f.file))
goto error_tgt_fput; /*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = f.file->private_data; /*
* When we insert an epoll file descriptor, inside another epoll file
* descriptor, there is the change of creating closed loops, which are
* better be handled here, than in more critical paths. While we are
* checking for loops we also determine the list of files reachable
* and hang them on the tfile_check_list, so we can check that we
* haven't created too many possible wakeup paths.
*
* We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
* the epoll file descriptor is attaching directly to a wakeup source,
* unless the epoll file descriptor is nested. The purpose of taking the
* 'epmutex' on add is to prevent complex toplogies such as loops and
* deep wakeup paths from forming in parallel through multiple
* EPOLL_CTL_ADD operations.
*/
mutex_lock_nested(&ep->mtx, );
if (op == EPOLL_CTL_ADD) {
if (!list_empty(&f.file->f_ep_links) ||
is_file_epoll(tf.file)) {
full_check = ;
mutex_unlock(&ep->mtx);
mutex_lock(&epmutex);
if (is_file_epoll(tf.file)) {
error = -ELOOP;
if (ep_loop_check(ep, tf.file) != ) {
clear_tfile_check_list();
goto error_tgt_fput;
}
} else
list_add(&tf.file->f_tfile_llink,
&tfile_check_list);
mutex_lock_nested(&ep->mtx, );
if (is_file_epoll(tf.file)) {
tep = tf.file->private_data;
mutex_lock_nested(&tep->mtx, );
}
}
} /*
* Try to lookup the file inside our RB tree, Since we grabbed "mtx"
* above, we can be sure to be able to use the item looked up by
* ep_find() till we release the mutex.
*/
epi = ep_find(ep, tf.file, fd); error = -EINVAL;
switch (op) {
case EPOLL_CTL_ADD:
if (!epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_insert(ep, &epds, tf.file, fd, full_check);
} else
error = -EEXIST;
if (full_check)
clear_tfile_check_list();
break;
case EPOLL_CTL_DEL:
if (epi)
error = ep_remove(ep, epi);
else
error = -ENOENT;
break;
case EPOLL_CTL_MOD:
if (epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_modify(ep, epi, &epds);
} else
error = -ENOENT;
break;
}
if (tep != NULL)
mutex_unlock(&tep->mtx);
mutex_unlock(&ep->mtx); error_tgt_fput:
if (full_check)
mutex_unlock(&epmutex); fdput(tf);
error_fput:
fdput(f);
error_return: return error;
}
  1. epoll_wait只做一些容错預处理,然后调用ep_poll
SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
int, maxevents, int, timeout)
{
int error;
struct fd f;
struct eventpoll *ep; /* The maximum number of event must be greater than zero */
if (maxevents <= || maxevents > EP_MAX_EVENTS)
return -EINVAL; /* Verify that the area passed by the user is writeable */
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
return -EFAULT; /* Get the "struct file *" for the eventpoll file */
f = fdget(epfd);
if (!f.file)
return -EBADF; /*
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
if (!is_file_epoll(f.file))
goto error_fput; /*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = f.file->private_data; /* Time to fish for events ... */
error = ep_poll(ep, events, maxevents, timeout); error_fput:
fdput(f);
return error;
}
  1. ep_poll初始化等待队列,并将唤醒回调设置为往就绪队列添加设备,再唤醒进程。这样,进程只需要检测就绪队列是否为空,如果为空,则休眠直到超时或被唤醒。
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
int maxevents, long timeout)
{
int res = , eavail, timed_out = ;
unsigned long flags;
long slack = ;
wait_queue_t wait;
ktime_t expires, *to = NULL; if (timeout > ) {
struct timespec end_time = ep_set_mstimeout(timeout); slack = select_estimate_accuracy(&end_time);
to = &expires;
*to = timespec_to_ktime(end_time);
} else if (timeout == ) {
/*
* Avoid the unnecessary trip to the wait queue loop, if the
* caller specified a non blocking operation.
*/
timed_out = ;
spin_lock_irqsave(&ep->lock, flags);
goto check_events;
} fetch_events:
spin_lock_irqsave(&ep->lock, flags); if (!ep_events_available(ep)) {
/*
* We don't have any available event to return to the caller.
* We need to sleep here, and we will be wake up by
* ep_poll_callback() when events will become available.
*/ /*
这里初始化等待队列,如果一个设备有事件,則会先往就绪链表中加就绪设备
然后唤醒进程
*/
init_waitqueue_entry(&wait, current);
__add_wait_queue_exclusive(&ep->wq, &wait); for (;;) {
/*
* We don't want to sleep if the ep_poll_callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
set_current_state(TASK_INTERRUPTIBLE);
if (ep_events_available(ep) || timed_out)
break;
if (signal_pending(current)) {
res = -EINTR;
break;
} spin_unlock_irqrestore(&ep->lock, flags);
if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) /* 进入休眠 */
timed_out = ; spin_lock_irqsave(&ep->lock, flags);
}
__remove_wait_queue(&ep->wq, &wait);/* 删除等待队列 */ set_current_state(TASK_RUNNING);
}
check_events:
/* Is it worth to try to dig for events ? */
eavail = ep_events_available(ep); spin_unlock_irqrestore(&ep->lock, flags); /*
* Try to transfer events to user space. In case we get 0 events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
if (!res && eavail &&
!(res = ep_send_events(ep, events, maxevents)) && !timed_out)
goto fetch_events; return res;
} static inline int ep_events_available(struct eventpoll *ep)
{
return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
}

  总结一下,select和epoll的流程如下:select与epoll分析

如果要比性能,那么大概有以下的区别:

  • 每一次select,都需要拷贝两次;而epoll只在添加新文件描述符里拷贝一次,其余的使用mmap进行交互
  • 每次select,都需要遍历所有的文件描述符(如果第一次未有事件,则是遍历两次);而epoll只是查询一下就绪列表是否为空。

  一句话,select是你每天起床都去各个快递公司问是否有自己的快递,而epoll是每天起床到门口的邮箱查下是否有自己的快递。