POJ 1944 Fiber Communications (枚举 + 并查集 OR 线段树)

时间:2022-10-22 22:41:08

题意

在一个有N(1 ≤ N ≤ 1,000)个点环形图上有P(1 ≤ P ≤ 10,000)对点需要连接。连接只能连接环上相邻的点。问至少需要连接几条边。

思路

突破点在于最后的结果一定不是一个环!所以我们枚举断边,则对于P个连接要求都只有唯一的方法:如果一个pair的两个端点在断点两侧,就分成[0,left],[right,N];否则就是[left, right]。这里区间以0开头是要考虑left=1、right=N的情况,至少得有个边([0, 1])表示N连向1的情况不是么。

处理一个区间内相连情况通常可以用线段树。不过我在这里用了下并查集,也挺有意思的:每个并查集的父节点是它连接着的最右端的节点,并且维护一个数量集。然后连接[x, y]的时候直接找x的父节点(最右点),再挨个向右缩点直到y即可。

代码

[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, end) for (int i = begin; i <= end; i ++)
using namespace std;

struct P{
int a, b;
}p[10005];
const int MAXN = 1005;
struct Disjoint_Sets{
struct Sets{
int father, num;
}S[MAXN];
void Init(int n){
for (int i = 0; i <= n; i ++){
S[i].father = i;
S[i].num = 1;
}
}
int Father(int x){
if (S[x].father == x){
return x;
}
else{
S[x].father = Father(S[x].father); //Path compression
return S[x].father;
}
}
void Union(int x, int y){
int fx = Father(x), fy = Father(y);
S[fy].num += S[fx].num;
S[fx].father = fy;
}
}DS;
void uni(int x, int y){
int xx = DS.Father(x);
while(DS.Father(xx) != DS.Father(y)){
DS.Union(xx, xx+1);
xx = DS.Father(xx);
}
}
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int n, m;
scanf("%d %d", &n, &m);
for (int i = 0; i < m; i ++){
scanf("%d %d", &p[i].a, &p[i].b);
if (p[i].b < p[i].a) swap(p[i].b, p[i].a);
}
int res = 0x3fffffff;
for (int l = 1; l <= n; l ++){
DS.Init(n);
for (int i = 0; i < m; i ++){
if (p[i].a <= l && p[i].b >= (l+1)%n){
uni(0, p[i].a);
uni(p[i].b, n);
}
else uni(p[i].a, p[i].b);
}
int sum = 0;
bool vis[1005] = {0};
for (int i = 1; i <= n; i ++){
if (!vis[DS.Father(i)] && DS.S[DS.Father(i)].num > 1){
sum += DS.S[DS.Father(i)].num - 1;
vis[DS.Father(i)] = 1;
}
}
res = min(res, sum);
}
printf("%d\n", res);
return 0;
}
[/cpp]