gnuplot Python API

时间:2023-03-09 02:56:45
gnuplot Python API

源文件

 #!/usr/bin/env python

 from os import popen

 class gnuplot_leon:
# Author : Leon Email: yangli0534@gmail.com
# a gnuplot api of python def __init__(self):
self.gnuplot = popen('gnuplot','w')
self.write = self.gnuplot.write
self.flush = self.gnuplot.flush
self.close = self.gnuplot.close
#return gp def set_plot_size(self,x=0.85,y=0.85):
self.write(''.join(['set size ',str(x),' ,',str(y),'\n']))
#self.write(''.join(['set term png size ',str(x),' ',str(y),'\n']))
#self.flush() def set_canvas_size(self,x=600,y=400):
#self.write('set size 0.85, 0.85\n')
self.write(''.join(['set term png size ',str(x),' ',str(y),'\n'])) def set_title(self,title='gnuplot'):
self.write(''.join(['set title "{/Times:Italic ',str(title), '}"\n']))
self.write('set title font ",10" norotate tc rgb "white"\n') def set_gif(self):
self.write('set terminal gif animate\n') def set_png(self):
self.write('set terminal png\n') def set_file_name(self,filename='gnuplot.gif'):
self.write(''.join(['set output ', '"',str(filename) ,'"','\n'])) def set_tics_color(self,color='orange'):
self.write(''.join(['set tics textcolor rgb ','"',str(color),'"','\n'])) def set_border_color(self,color='orange'):
self.write(''.join(['set border lc rgb ','"',str(color),'"','\n'])) def set_grid_color(self,color='orange'):
self.write(''.join(['set grid lc rgb ','"',str(color),'"','\n'])) def set_bkgr_color(self,color='orange'):
self.write(''.join(['set object 1 rectangle from screen 0,0 to screen 1,1 fc rgb ','"',str(color),'"',' behind\n'])) def set_xlabel(self,text='x',color='white'):
self.write(''.join(['set xlabel " {/Times:Italic distance: ', str(text) ,' } " tc rgb ','"',str(color),'"',' \n'])) def set_ylabel(self,text='x',color='white'):
self.write(''.join(['set ylabel " {/Times:Italic distance: ', str(text) ,' } " tc rgb ','"',str(color),'"',' \n'])) def auto_scale_enable(self):
self.write('set autoscale\n') def set_key(self,onoff='off ',text='gnuplot',color='white'):
self.write('unset key\n')
self.write(''.join(['set key ',str(onoff),' title "',str(text),'" textcolor rgbcolor "',str(color),'"\n']))
#self.write('show key\n') def set_x_range(self,start,end):
self.write(''.join(['set xrange [ ',str(start),':',str(end),']\n'])) def set_y_range(self,start,end):
self.write(''.join(['set yrange [ ',str(start),':',str(end),']\n'])) def set_frame_start(self,linestype = 'l',linewidth=3,l_color='green,'):
#self.write('plot "-" w l lw 1.5 lc rgb "green"\n')
self.write(''.join(['plot "-" notitle w ',str(linestype),' lw ', str(linewidth), ' lc rgb ', '"', str(l_color),'" \n'])) def update_point(self,x,y):
self.write(''.join([str(x),' ',str(y),'\n'])) def set_frame_end(self):
self.write('e\n') def set_output_valid(self):
self.write('set output\n') def close(self):
self.close()

例'1

 #!/usr/bin/env python

 import sys
import math
import os
from gnuplot_leon import * # Author : Leon Email: yangli0534@gmail.com
# fdtd simulation , plotting with gnuplot, writting in python
# perl and gnuplot software packages should be installed before running this program
# 1d fdtd with absorbing boundary and TFSF boundary between [49] and [50]
# lossy dielectric material localted at > ez[150] gp = gnuplot_leon() gp.set_plot_size(1,1)
gp.set_canvas_size(600,800)
gp.set_title('fdtd simulation by leon : gnuplot class test')
title = 'fdtd simulation by leon,yangli0534\\\\@gmail.com'
#gp.write('set terminal gif animate\n')
gp.set_title(title)
#gp.set_gif()
gp.set_png()
gp.set_file_name('demo1.png')
gp.set_tics_color('white')
gp.set_border_color('orange')
gp.set_grid_color('orange')
gp.set_bkgr_color('gray10')
gp.set_xlabel('length','white')
gp.set_ylabel('amplitude','white')
gp.auto_scale_enable()
gp.set_key('off','sin(x)','white') size = 400#physical distance sinwave=size * [0.00]# cnt = 0
elem = 0.00000
pi = 3.14159265358979323846
#gp.write(''.join(['set xrange [0:',str(size),'-1]\n']));
gp.set_x_range(0,size-1)
#for i in range(0,size):
# sinwave[i] = 0.0 for mm in range(0, size-1):
sinwave[mm] = math.sin(2*pi*mm/size) gp.set_frame_start('l', 3, 'green')
cnt = 0
for elem in sinwave:
gp.update_point(cnt,elem)
#print ''.join([str(cnt),':',str(elem),'\n'])
cnt += 1
gp.set_frame_end()
gp.set_key('off','sin(x)','white')
gp.set_output_valid()
gp.close()

gnuplot Python API

例2

 #!/usr/bin/env python

 import sys
import math
import os
from gnuplot_leon import * # Author : Leon Email: yangli0534@gmail.com
# fdtd simulation , plotting with gnuplot, writting in python
# perl and gnuplot software packages should be installed before running this program
# 1d fdtd with absorbing boundary and TFSF boundary between [49] and [50]
# lossy dielectric material localted at > ez[150] gp = gnuplot_leon() gp.set_plot_size(0.85,0.85)
gp.set_canvas_size(600,400)
#gp.set_title('fdtd simulation by leon : gnuplot class test')
title = 'fdtd simulation by leon,yangli0534\\\\@gmail.com' gp.set_title(title)
gp.set_gif()
#gp.set_png()
gp.set_file_name('demo2.gif')
gp.set_tics_color('white')
gp.set_border_color('orange')
gp.set_grid_color('orange')
gp.set_bkgr_color('gray10')
gp.set_xlabel('length','white')
gp.set_ylabel('amplitude','white')
gp.auto_scale_enable()
gp.set_key('off','sin(x)','white') size = 400#physical distance
ez=size * [0.00]#electric field
hy=size * [0.00]#magnetic field
ceze=size * [0.00]#
cezh=size * [0.00]#
chye=size * [0.00]#
chyh=size * [0.00]#
#sinwave=size * [0.00]#
imp0 = 377.00
LOSS = 0.01
LOSS_LAYER = 250
MaxTime = 18000
cnt = 0
elem = 0.00000 gp.set_x_range(0,size-1)
for i in range(0,size):
ez[i] = 0.0
hy[i] = 0.0
#sinwave[i] = 0.0
if (i < 100):
#$epsR[$i] = 1.0;
ceze[i] = 1.0
cezh[i] = imp0
elif(i < LOSS_LAYER):
#$epsR[$i] = 1.0;
ceze[i] = 1.0
cezh[i] = imp0/9.0
else :
#$epsR[$i] = 9.0;
ceze[i] = (1.0-LOSS)/(1.0+LOSS)
cezh[i] = imp0 / 9 /(1.0+LOSS)
if( i < LOSS_LAYER):
chye[i] = 1.0/imp0
chyh[i] = 1.0
else:
chye[i] = 1.0/imp0/(1.0+LOSS)
chyh[i] = (1.0-LOSS)/(1.0+LOSS)
for qTime in range(0, MaxTime):
# update magnetic field
for mm in range(0, size-1):
hy[mm] = hy[mm]*chyh[mm] + (ez[mm+1]-ez[mm])*chye[mm]
#sinwave[mm] = math.sin(mm/size*2*pi)
hy[49] = hy[49]-math.exp(-(qTime - 30.0)*(qTime - 30.0)/100.0)/imp0
# update electric field
ez[0] = ez[1]#abc
#$ez[$size-1] = $ez[$size-2];
for mm in range(1, size-1):
ez[mm] = ez[mm]*ceze[mm] + (hy[mm] - hy[mm-1])*cezh[mm]
if(qTime % 30 == 0):
gp.set_frame_start('l', 3, 'green')
cnt = 0
for elem in ez:
gp.update_point(cnt,elem)
cnt += 1
gp.set_frame_end()
ez[50] = ez[50]+math.exp(-(qTime +0.5-(-0.5)- 30.0)*(qTime +0.5-(-0.5)- 30.0)/100.0);
#gp.write('set output\n')
#gp.close()
gp.set_output_valid()
gp.close()

gnuplot Python API