E. Bear and Destroying Subtrees
http://codeforces.com/problemset/problem/643/E
题意:
Q个操作。
- 加点,在原来的树上加一个点,之后还是一棵树,初始时一个点。
- 让一棵子树内每条边有1/2的概率消失,然后的深度为:剩余的与子树的根联通的点中深度最大的。询问假如攻击这个点,期望深度。
分析:
可以枚举一个深度,计算概率。
f[x][i]表示以x为根的子树中,深度为<=x的概率。那么答案就是$\sum_{h=1}^{MAX\_H}h\times(f[x][h]-f[x][h-1])$。
考虑如何求出f数组:直接将所有子树小于等于h的概率相乘,$f[x][h]=\prod_{v=son_x}(\frac{1}{2}+\frac{1}{2}f[v][h-1])$
考虑如何维护f数组,如果加入一个点,那么只会影响到父节点到根的路径,而且每个点只会影响一个,即距离它为k的点(设为y),只有f[y][k-1]受到影响。因为增加一个点后,它的父节点的0会受到影响(乘1/2),那么父节点的父节点的1就受到影响,以此类推。还可以理解为:因为增加了一个点,y的最长路径不是y-1了, 那么概率也不是1了,因为如果长度为k的概率要求新增的这个点的边断开才行。y的其他的值不受影响吗?f[y][k-2]要求距离它k-1的点必须断开,距离大于k-1的剩下的随便了。 那么,直接暴力修改这条路径即可。每个点除以原来的f[v][h-1],乘以新的f[v][h-1]。
由于路径长度是很长的(可以5e5),直接暴力修改会T。
发现如果路径很长之后,它的概率就会非常小,$\frac{1}{2^h}$,所以只需确定一个更新的深度,这个深度不会影响精度,然后每次修改这些个点即可。
具体题解里说明 http://codeforces.com/blog/entry/44754
记录一下当时的想法:f[x][i]为x子树内深度为i的概率。发现转移起来真是麻烦。
首先可以然后它的一个子节点为i,然后其他的节点为0~i,然后,相乘,再除以2。(或者每个点只乘以左边的,那么就不需要除以2了)。然后就需要在记录前缀和,就成了和上面差不多了。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
const int H = ; double f[N][H+];
int fa[N], n = ; void add(int x) {
fa[++n] = x;
for (int i=; i<=H; ++i) f[n][i] = ;
double t1 = f[x][], t2;
f[x][] *= 0.5;
for (int i=; i<=H; ++i, x=fa[x]) {
int p = fa[x]; if (!p) break;
t2 = f[p][i];
f[p][i] = f[p][i] / (0.5 + 0.5 * t1);
f[p][i] = f[p][i] * (0.5 + 0.5 * f[x][i - ]);
t1 = t2;
}
}
void query(int x) {
double ans = ;
for (int i=; i<=H; ++i)
ans += i * (f[x][i] - f[x][i - ]);
printf("%.10lf\n",ans);
}
int main() {
int Q = read();
for (int i=; i<=H; ++i) f[][i] = ;
while (Q --) {
int opt = read(), a = read();
if (opt == ) add(a);
else query(a);
}
return ;
}