手写朴素贝叶斯(naive_bayes)分类算法

时间:2023-03-09 04:04:13
手写朴素贝叶斯(naive_bayes)分类算法

朴素贝叶斯假设各属性间相互独立,直接从已有样本中计算各种概率,以贝叶斯方程推导出预测样本的分类。

为了处理预测时样本的(类别,属性值)对未在训练样本出现,从而导致概率为0的情况,使用拉普拉斯修正(假设属性值与类别均匀分布)。

代码及注释如下:

一、离散值

1,朴素贝叶斯算法计算相关参数并返回,预测使用这些参数即可

# 手写拉普拉斯修正的朴素贝叶斯
import numpy as np
import pandas as pd
def naive_bayes(data):
'''data:pandas.DataFrame'''
# 列名
attrs=data.columns
# 类别
labels=data[attrs[-1]].unique()
# 类别数
N=labels.size
# 样本总数
D=data.index.size
# c类样本概率
pc=np.empty(shape=(N,1))
# c类中,第i个属性取值为xi的概率,这里计算了所有,而非只针对测试样本,保存后predict时直接从里面取值即可
p_xc=[]
# 包含每个属性的可取值
features=[data[i].unique() for i in attrs[:-1]]
for i in range(N):
df=data[data[attrs[-1]]==labels[i]]
Dc=df[attrs[0]].count()
pc[i]=np.array([(Dc+1)/(D+N)])
p_c=[]
for j in range(len(features)):
values=features[j]
Ni=values.size
c_attr=[]
for value in values:
Dc_xi=df[df[attrs[j]]==value].index.size
c_attr.append((Dc_xi+1)/(Dc+Ni))
p_c.append(c_attr)
p_xc.append(p_c)
return p_xc,pc,N,features,labels
# 预测一个样本
def predict(x,p_xc,pc,num_class,features,labels):
result=[]
for i in range(num_class):
res=1.
c=p_xc[i]
for j in range(len(c)):
feature_j=c[j]
for k in range(len(feature_j)):
if x[j]==features[j][k]:
res*=feature_j[k]
result.append(pc[i][0]*res)
max_c=0
max_index=-1
for i in range(len(result)):
if result[i]>max_c:
max_c=result[i]
max_index=i
return result,labels[max_index]
# 预测多个样本
def predicts(x,p_xc,pc,num_class,features,labels):
result=[]
for data in x:
_,clazz=predict(data,p_xc,pc,num_class,features,labels)
result.append(clazz)
return result

2,使用西瓜集2.0训练及测试

def createDataSet():

    dataSet = [
#
['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
#
['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
#
['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
#
['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
#
['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
#
['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '好瓜'],
#
['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘', '好瓜'],
#
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', '好瓜'], # ----------------------------------------------------
#
['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜'],
#
['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', '坏瓜'],
#
['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', '坏瓜'],
#
['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', '坏瓜'],
#
['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑', '坏瓜'],
#
['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑', '坏瓜'],
#
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '坏瓜'],
#
['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑', '坏瓜'],
#
['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜']
] # 特征值列表
labels = ['色泽', '根蒂', '敲击', '纹理', '脐部', '触感','好坏']
dataset=pd.DataFrame(data=dataSet,columns=labels)
return dataset

3,训练及预测

这里预测使用训练数据,可以看到精度却不咋样,个人认为这跟样本太小、使用了修正(修正在大样本下的影响较小)及属性并非相互独立有关

dataset=createDataSet()
p_xc,pc,num_class,features,labels=naive_bayes(dataset) value=dataset[dataset.columns[:-1]].values
result=predicts(value,p_xc,pc,num_class,features,labels)
real=dataset[dataset.columns[-1]].values
df=pd.DataFrame([[result[i]==real[i] for i in range(len(result))]])
# 精度 0.8235294117647058
df.iloc[0].sum()/df.iloc[0].count()

二、连续值

1,贝叶斯方法

def normal_distribution(mean,var,x):
return np.power(np.e,-(x-mean)*(x-mean)/(2*var))/np.sqrt(2*np.pi*var)
# 连续值处理,假设数据服从正态分布,如上函数所示
def naive_bayes_2(X_train,y_train):
'''data:pandas.DataFrame'''
labels=list(set(y_train))
# 类别数
num_class=len(labels)
data=pd.DataFrame(X_train,columns=['l1','l2','l3','l4'])
data['label']=y_train
N=len(y_train)
# 均值和方差
means=[]
vals=[]
# c类样本概率
pc=np.empty(shape=(num_class,1))
# 对每一类求均值和方差
for i in range(num_class):
df=data[data['label']==labels[i]]
l=df.index.size
pc[i]=l/N
mean=[]
val=[]
# 各属性的均值和方差
for col in df.columns[:-1]:
mean.append(df[col].mean())
val.append(df[col].var())
means.append(mean)
vals.append(val) return means,vals,pc,labels
# 预测多个样本
def predict_2(x_test,means,vals,pc,labels):
num_class=len(labels)
results=[]
for x in x_test:
result=[]
for i in range(num_class):
res=1.
res*=pc[i][0]
j=0
for mean,val in zip(means[i],vals[i]):
res*=normal_distribution(mean,val,x[j])
j+=1
result.append(res)
results.append(labels[result.index(max(result))])
return results

2,使用sklearn中iris数据集

from sklearn.datasets import load_iris
data = load_iris() x=data['data']
y=data['target']
cols=data['target_names'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test=train_test_split(x,y,test_size=0.2,random_state=10)

3,训练及测试

means,vals,pc,labels=naive_bayes_2(X_train,y_train)

results=predict_2(X_test,means,vals,pc,labels)

from sklearn.metrics import accuracy_score
# 精度100%
accuracy_score(results,y_test)

三、总结

例举了2个例子,离散值的样本少,使用了修正,精度不咋样,连续值的精度100%,取得不错的效果,也说明各个类别下的各个特征基本符合正态分布。