深度学习(pytorch)-1.基于简单神经网络的图片自动分类

时间:2023-03-09 14:23:51
深度学习(pytorch)-1.基于简单神经网络的图片自动分类

这是pytorch官方的一个例子

官方教程地址:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py

代码如下

 # coding=utf-8
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim # The output of torchvision datasets are PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1]
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]) # 训练集,将相对目录./data下的cifar-10-batches-py文件夹中的全部数据(50000张图片作为训练数据)加载到内存中,若download为True时,会自动从网上下载数据并解压
trainset = torchvision.datasets.CIFAR10(root=r'E:\Face Recognition\cifar-10-python', train=True, download=False, transform=transform) # 将训练集的50000张图片划分成12500份,每份4张图,用于mini-batch输入。shffule=True在表示不同批次的数据遍历时,打乱顺序。num_workers=2表示使用两个子进程来加载数据
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True) # 测试集,将相对目录./data下的cifar-10-batches-py文件夹中的全部数据(10000张图片作为测试数据)加载到内存中,若download为True时,会自动从网上下载数据并解压
testset = torchvision.datasets.CIFAR10(root=r'E:\Face Recognition\cifar-10-python', train=False, download=False, transform=transform) # 将测试集的10000张图片划分成2500份,每份4张图,用于mini-batch输入。
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck') class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5) # 定义conv1函数的是图像卷积函数:输入为图像(3个频道,即彩色图),输出为6张特征图, 卷积核为5x5正方形
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x net = Net() criterion = nn.CrossEntropyLoss() # 叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 使用SGD(随机梯度下降)优化,学习率为0.001,动量为0.9 for epoch in range(10): # 遍历数据集两次 running_loss = 0.0
# enumerate(sequence, [start=0]),i序号,data是数据
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data # data的结构是:[4x3x32x32的张量,长度4的张量] # wrap them in Variable
inputs, labels = Variable(inputs), Variable(labels) # 把input数据从tensor转为variable # zero the parameter gradients
optimizer.zero_grad() # 将参数的grad值初始化为0 # forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels) # 将output和labels使用叉熵计算损失
loss.backward() # 反向传播
optimizer.step() # 用SGD更新参数 # 每2000批数据打印一次平均loss值
running_loss += loss.data[0] # loss本身为Variable类型,所以要使用data获取其Tensor,因为其为标量,所以取0
if i % 2000 == 1999: # 每2000批打印一次
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0 print('Finished Training') correct = 0
total = 0
for data in testloader:
images, labels = data
outputs = net(Variable(images))
# print outputs.data
_, predicted = torch.max(outputs.data, 1) # outputs.data是一个4x10张量,将每一行的最大的那一列的值和序号各自组成一个一维张量返回,第一个是值的张量,第二个是序号的张量。
total += labels.size(0)
correct += (predicted == labels).sum() # 两个一维张量逐行对比,相同的行记为1,不同的行记为0,再利用sum(),求总和,得到相同的个数。 print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))

1.由于windows平台的pytorch存在很多问题,例如多线程无法正常工作,所以DataLoader中的num_worker得去掉

2.代码以cifar-10数据测试集为例,但是训练的效果并不是很理想,loss函数数据如下,两次重复训练后的准确率为56%,10次重复训练后的准确率为61%,(个人表示原图片像素太差,至少一半,我都分不清是啥,真是为难了神经网络了)

[1,  2000] loss: 2.219
[1, 4000] loss: 1.869
[1, 6000] loss: 1.669
[1, 8000] loss: 1.581
[1, 10000] loss: 1.537
[1, 12000] loss: 1.488
[2, 2000] loss: 1.406
[2, 4000] loss: 1.385
[2, 6000] loss: 1.343
[2, 8000] loss: 1.318
[2, 10000] loss: 1.348
[2, 12000] loss: 1.305
[3, 2000] loss: 1.234
[3, 4000] loss: 1.206
[3, 6000] loss: 1.219
[3, 8000] loss: 1.213
[3, 10000] loss: 1.205
[3, 12000] loss: 1.199
[4, 2000] loss: 1.115
[4, 4000] loss: 1.127
[4, 6000] loss: 1.123
[4, 8000] loss: 1.118
[4, 10000] loss: 1.143
[4, 12000] loss: 1.106
[5, 2000] loss: 1.023
[5, 4000] loss: 1.022
[5, 6000] loss: 1.073
[5, 8000] loss: 1.076
[5, 10000] loss: 1.060
[5, 12000] loss: 1.048
[6, 2000] loss: 0.965
[6, 4000] loss: 0.985
[6, 6000] loss: 0.988
[6, 8000] loss: 1.008
[6, 10000] loss: 1.017
[6, 12000] loss: 0.999
[7, 2000] loss: 0.902
[7, 4000] loss: 0.925
[7, 6000] loss: 0.974
[7, 8000] loss: 0.955
[7, 10000] loss: 0.968
[7, 12000] loss: 0.979
[8, 2000] loss: 0.866
[8, 4000] loss: 0.893
[8, 6000] loss: 0.909
[8, 8000] loss: 0.932
[8, 10000] loss: 0.934
[8, 12000] loss: 0.937
[9, 2000] loss: 0.837
[9, 4000] loss: 0.858
[9, 6000] loss: 0.865
[9, 8000] loss: 0.873
[9, 10000] loss: 0.906
[9, 12000] loss: 0.907
[10, 2000] loss: 0.809
[10, 4000] loss: 0.810
[10, 6000] loss: 0.832
[10, 8000] loss: 0.865
[10, 10000] loss: 0.878
[10, 12000] loss: 0.877