C# ConcurrentStack实现

时间:2023-03-10 06:38:51
C# ConcurrentStack实现

我们通过C# Queue 和Stack的实现知道Stack是依靠数组实现的,那么ConcurrentStack的栈又是如何实现的了,然后它的线程安全又是怎么做到的了? 来看看其code吧

 public class ConcurrentStack<T> : IProducerConsumerCollection<T>, IReadOnlyCollection<T>
{
private class Node
{
internal readonly T m_value; // Value of the node.
internal Node m_next; // Next pointer.
internal Node(T value)
{
m_value = value;
m_next = null;
}
}
private volatile Node m_head;
private const int BACKOFF_MAX_YIELDS = ; public ConcurrentStack(){}
public ConcurrentStack(IEnumerable<T> collection)
{
if (collection == null)
{
throw new ArgumentNullException("collection");
}
InitializeFromCollection(collection);
} private void InitializeFromCollection(IEnumerable<T> collection)
{
// We just copy the contents of the collection to our stack.
Node lastNode = null;
foreach (T element in collection)
{
Node newNode = new Node(element);
newNode.m_next = lastNode;
lastNode = newNode;
} m_head = lastNode;
} public void Push(T item)
{
Node newNode = new Node(item);
newNode.m_next = m_head;
if (Interlocked.CompareExchange(ref m_head, newNode, newNode.m_next) == newNode.m_next)
{
return;
}
PushCore(newNode, newNode);
} private void PushCore(Node head, Node tail)
{
SpinWait spin = new SpinWait();
do
{
spin.SpinOnce();
// Reread the head and link our new node.
tail.m_next = m_head;
}
while (Interlocked.CompareExchange(ref m_head, head, tail.m_next) != tail.m_next); } public bool TryPop(out T result)
{
Node head = m_head;
//stack is empty
if (head == null)
{
result = default(T);
return false;
}
if (Interlocked.CompareExchange(ref m_head, head.m_next, head) == head)
{
result = head.m_value;
return true;
}
return TryPopCore(out result);
} private bool TryPopCore(out T result)
{
Node poppedNode; if (TryPopCore(, out poppedNode) == )
{
result = poppedNode.m_value;
return true;
} result = default(T);
return false; }
private int TryPopCore(int count, out Node poppedHead)
{
SpinWait spin = new SpinWait();
Node head;
Node next;
int backoff = ;
Random r = new Random(Environment.TickCount & Int32.MaxValue); // avoid the case where TickCount could return Int32.MinValue
while (true)
{
head = m_head;
// Is the stack empty?
if (head == null)
{
poppedHead = null;
return ;
}
next = head;
int nodesCount = ;
for (; nodesCount < count && next.m_next != null; nodesCount++)
{
next = next.m_next;
} // Try to swap the new head. If we succeed, break out of the loop.
if (Interlocked.CompareExchange(ref m_head, next.m_next, head) == head)
{
poppedHead = head;
return nodesCount;
} // We failed to CAS the new head. Spin briefly and retry.
for (int i = ; i < backoff; i++)
{
spin.SpinOnce();
} backoff = spin.NextSpinWillYield ? r.Next(, BACKOFF_MAX_YIELDS) : backoff * ;
}
}
}

ConcurrentStack<T>里面有一个内部类Node,看到这里我们就知道ConcurrentStack<T>的栈是一开节点Node来做的一个链表,非常好理解。那么线程安全又是怎么做到的了?首先我们来看看Push放法,首先我们需要新实例一个Node,并且新Node的m_next指向现有m_head头节点【newNode.m_next = m_head】,然后在原子比较newNode.m_next 是否是m_head【Interlocked.CompareExchange(ref m_head, newNode, newNode.m_next) == newNode.m_next】,如果是那么把m_head改为newNode ,push操作完成。如果第一个线程newNode.m_next = m_head之后,有新的线程执行了Interlocked.CompareExchange(ref m_head, newNode, newNode.m_next) == newNode.m_next 那么push就需要执行PushCore方法;该方法先自旋一下,然后在Interlocked.CompareExchange(ref m_head, head, tail.m_next) != tail.m_next【这里head和tail是新节点,tail.m_next是指向m_head】,如果当前线程是最新最近的那个 ,那么这个Interlocked.CompareExchange(ref m_head, head, tail.m_next) == tail.m_next就为true,退出循环,否者自旋后再次比较赋值。那么TryPop的实现也是类似的,如果if (Interlocked.CompareExchange(ref m_head, head.m_next, head) == head)成立那么直接返回,否者调用TryPopCore方法。而TryPopCore方法的核心是   if (Interlocked.CompareExchange(ref m_head, next.m_next, head) == head),如果成立则退出,否者自旋,至于自旋的次数来源于for (int i = 0; i < backoff; i++){ spin.SpinOnce(); }。是不是很简单了,但是也很巧妙啊。线程安全依靠SpinWait 的自旋和原子操作Interlocked.CompareExchange来实现的。