Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

时间:2020-12-09 12:38:34

Partition

Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 954 Accepted Submission(s): 545
Problem Description
How many ways can the numbers 1 to 15 be added together to make 15? The technical term for what you are asking is the "number of partition" which is often called P(n). A partition of n is a collection of positive integers (not necessarily
distinct) whose sum equals n.



Now, I will give you a number n, and please tell me P(n) mod 1000000007.
Input
The first line contains a number T(1 ≤ T ≤ 100), which is the number of the case number. The next T lines, each line contains a number n(1 ≤ n ≤ 105) you need to consider.


Output
For each n, output P(n) in a single line.
Sample Input
4
5
11
15
19
Sample Output
7
56
176
490
Source


题意:问一个数n能被拆分成多少种方法

首先你要知道母函数+然后你要知道五边形数定理;

设第n个五边形数为Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一),那么Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一),即序列为:1,
5, 12, 22, 35, 51, 70, ...

相应图形例如以下:

Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

设五边形数的生成函数为Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)。那么有:

Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

以上是五边形数的情况。以下是关于五边形数定理的内容:

五边形数定理是一个由欧拉发现的数学定理。描写叙述欧拉函数展开式的特性。欧拉函数的展开式例如以下:

Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

欧拉函数展开后,有些次方项被消去。仅仅留下次方项为1, 2, 5, 7, 12, ...的项次,留下来的次方恰为广义五边形数。

五边形数和切割函数的关系

欧拉函数的倒数是切割函数的母函数。亦即:

Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)   当中Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)为k的切割函数。

上式配合五边形数定理,有:

Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

 
在 n>0 时,等式右側的系数均为0,比較等式二側的系数,可得
 

Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

因此可得到切割函数p(n)的递归式:Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

比如n=10时,有:Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

所以,通过上面递归式,我们能够非常高速地计算n的整数划分方案数p(n)了。

详见*:https://zh.wikipedia.org/wiki/%E4%BA%94%E8%A7%92%E6%95%B0#.E5.BB.A3.E7.BE.A9.E4.BA.94.E9.82.8A.E5.BD.A2.E6.95.B8 或 https://zh.wikipedia.org/wiki/%E4%BA%94%E9%82%8A%E5%BD%A2%E6%95%B8%E5%AE%9A%E7%90%86 


转载请注明出处:http://blog.csdn.net/u010579068 


详见代码:
#include<iostream>
#include<cstdio>
#define NN 100005
#define LL __int64
#define mod 1000000007 using namespace std;
LL wu[NN],pa[NN];
void init()
{
pa[0]=1;
pa[1]=1;
pa[2]=2;
pa[3]=3;
LL ca=0;
for(LL i=1;i<=100000/2;i++)
{
wu[ca++]=i*(3*i-1)/2;
wu[ca++]=i*(3*i+1)/2;
if(wu[ca-1]>100000) break;
}
for(LL i=4;i<=100000;i++)
{
pa[i]=(pa[i-1]+pa[i-2])%mod;
ca=1;
while(wu[2*ca]<=i)
{
if(ca&1)
{
pa[i]=(pa[i]-pa[i-wu[2*ca]])%mod;
pa[i]=(pa[i]%mod+mod)%mod;
if(wu[2*ca+1]<=i)
pa[i]=(pa[i]-pa[i-wu[2*ca+1]])%mod;
pa[i]=(pa[i]%mod+mod)%mod;
}
else
{
pa[i]=(pa[i]+pa[i-wu[2*ca]])%mod;
pa[i]=(pa[i]%mod+mod)%mod;
if(wu[2*ca+1]<=i)
pa[i]=(pa[i]+pa[i-wu[2*ca+1]])%mod;
pa[i]=(pa[i]%mod+mod)%mod;
}
ca++;
}
}
}
int main()
{
int T,n;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
printf("%I64d\n",pa[n]);
}
return 0; }