BZOJ 3992 [SDOI 2015] 序列统计 解题报告

时间:2023-03-08 23:06:25
BZOJ 3992 [SDOI 2015] 序列统计 解题报告

这个题最暴力的搞法就是这样的:

设 $Dp[i][j]$ 为前 $i$ 个数乘积为 $j$ 的方案数。

转移的话就不多说了哈。。。

当前复杂度 $O(nm^2)$

注意到,$M$ 是个质数,就说明 $M$ 有原根并且我们可以很快的求出来。

于是对于 $1\rightarrow M-1$ 中的每一个数都可以表示成原根的某次幂。

于是乘法可以转化为原根的幂的加法,

转移的时候就相当于做多项式乘法了。

我们再注意到,$1004535809 = 479 \times 2^{21} + 1$ 并且是个质数,原根为 $3$。

于是转移的时候就可以用 $FFT$ 优化了。

当前复杂度 $O(nm\log m)$

我们再考虑,每次多项式乘法中乘的多项式都是一样的,那么是不是就可以快速幂啊?

当前复杂度 $O(m\log m\log n)$,可以 A 掉这个题啦~

注意那些等于 $0$ 的数。。。

具体细节自己脑补脑补吧~

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
#define N 16384 + 5
#define Mod 1004535809
#define g 3 int n, p, x, m, len, w, d, root, inv_len, ans;
int T[N], Num[N], Pos[N];
int A[N], B[N], C[N], Rev[N], e[][N]; inline int power(int u, int v, int p)
{
int res = ;
for (; v; v >>= )
{
if (v & ) res = (LL) res * u % p;
u = (LL) u * u % p;
}
return res;
} inline void Init()
{
scanf("%d%d%d%d", &n, &p, &x, &m);
for (int i = ; i <= m; i ++)
scanf("%d", T + i);
for (len = p << ; len != (len & -len); len += (len & -len)) ;
for (int i = len; i > ; i >>= ) d ++;
inv_len = power(len, Mod - , Mod);
w = power(g, (Mod - ) / len, Mod);
} inline bool Judge(int x, int p)
{
for (int i = ; i * i <= p; i ++)
if ((p - ) % i == && power(x, (p - ) / i, p) == ) return ;
return ;
} inline int Find_Root(int p)
{
if (p == ) return ;
int res = ;
for (; !Judge(res, p); res ++) ;
return res;
} inline void Prepare()
{
root = Find_Root(p);
for (int i = ; i < p - ; i ++)
{
Num[i] = !i ? : Num[i - ] * root % p;
Pos[Num[i]] = i;
}
} inline int Inc(int u, int v)
{
return u + v - (u + v >= Mod ? Mod : );
} inline void FFT(int *Ar, int op)
{
for (int i = ; i < len; i ++)
if (Rev[i] > i) swap(Ar[i], Ar[Rev[i]]);
for (int k = , s = ; k < len; k <<= , s ++)
for (int i = ; i < len; i ++)
{
if (i & k) continue ;
int t = (i & k - ) << d - s;
int u = Inc(Ar[i], (LL) Ar[i + k] * e[op][t] % Mod);
int v = Inc(Ar[i], Mod - ((LL) Ar[i + k] * e[op][t] % Mod));
Ar[i] = u, Ar[i + k] = v;
}
} inline void Convol(int *U, int *V)
{
for (int i = ; i < len; i ++)
C[i] = V[i];
FFT(U, ), FFT(C, );
for (int i = ; i < len; i ++)
U[i] = (LL) U[i] * C[i] % Mod;
FFT(U, );
for (int i = ; i < len; i ++)
U[i] = (LL) U[i] * inv_len % Mod;
for (int i = len - ; i >= p - ; i --)
{
U[i - p + ] = Inc(U[i - p + ], U[i]);
U[i] = ;
}
} inline void Solve()
{
A[] = ;
for (int i = ; i <= m; i ++)
{
if (T[i] == ) continue ;
B[Pos[T[i]]] ++;
}
for (int i = , inv_w = power(w, Mod - , Mod); i < len; i ++)
{
e[][i] = !i ? : (LL) e[][i - ] * w % Mod;
e[][i] = !i ? : (LL) e[][i - ] * inv_w % Mod;
for (int j = ; j < d; j ++)
if ((i >> j) & ) Rev[i] += << (d - j - );
}
for (; n; n >>= )
{
if (n & ) Convol(A, B);
Convol(B, B);
}
ans = A[Pos[x]];
} int main()
{
#ifndef ONLINE_JUDGE
freopen("sequence.in", "r", stdin);
freopen("sequence.out", "w", stdout);
#endif Init();
Prepare();
Solve();
printf("%d\n", ans); #ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return ;
}

3992_Gromah