【bzoj4872】【shoi2017】分手即是祝愿

时间:2023-03-09 14:54:46
【bzoj4872】【shoi2017】分手即是祝愿

4872: [Shoi2017]分手是祝愿

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 746  Solved: 513
[Submit][Status][Discuss]

Description

Zeit und Raum trennen dich und mich.
时空将你我分开。B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为
从 1 到 n 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏
的目标是使所有灯都灭掉。但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被
改变,即从亮变成灭,或者是从灭变成亮。B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机
操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,
可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个
策略显然小于等于 k 步)操作这些开关。B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使
用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定
是整数,所以他只需要知道这个整数对 100003 取模之后的结果。

Input

第一行两个整数 n, k。
接下来一行 n 个整数,每个整数是 0 或者 1,其中第 i 个整数表示第 i 个灯的初始情况。
1 ≤ n ≤ 100000, 0 ≤ k ≤ n;

Output

输出一行,为操作次数的期望乘以 n 的阶乘对 100003 取模之后的结果。

Sample Input

4 0

0 0 1 1

Sample Output

512

HINT

Source

[Submit][Status][Discuss]

题解:
        从后往前求出最小次数;
       发现策略变化比较单一,是一条链的情况;
       fi 表示还有次操作的情况 ;
       fi = (i/n)fi-1 + (1 - i/n)fi+1 + 1;
       观察到i/n + 1-i/n = 1;
      (i/n)(fi-fi-1) = ((n-i)/n)(fi+1-fi) + 1;
      gi = fi - fi-1 --->  gi = ((n-i)gi+1 + n) / i ;
      然后就想了很久初值的问题。。。猛然发觉gn = 1;
      时间复杂度:O(n)
      20181103s

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<stack>
#include<map>
#include<set>
#define Run(i,l,r) for(int i=l;i<=r;i++)
#define Don(i,l,r) for(int i=l;i>=r;i--)
#define ll long long
#define ld long double
#define inf 0x3f3f3f3f
using namespace std;
const int N= , mod=;
int n,k,a[N],b[N],cnt,g[N],f[N],iv[N],pw[N];
int main(){
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
scanf("%d%d", &n,&k);
iv[]=pw[]=;
for(int i=;i<=n;i++){
iv[i]=1ll*(mod-mod/i)*iv[mod%i]%mod;
pw[i]=1ll*pw[i-]*i%mod;
}
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=n,t;i;i--){
t=a[i];
for(int j=i+i;j<=n;j+=i)t^=b[j];
if(t)cnt++,b[i]=;
}
if(cnt<=k)printf("%lld\n",1ll*cnt*pw[n]%mod),exit();
g[n]=;
for(int i=n-;i>k;i--){
g[i] = ( 1ll * ( n - i ) * g[i+] + n ) %mod * iv[i] %mod;
}
f[k]=k;
for(int i=k+;i<=cnt;i++){
f[i] = (f[i - ] + g[i])%mod;
}
printf("%lld\n",1ll * f[cnt] * pw[n] %mod);
return ;
}//by tkys_Austin;