CF908D New Year and Arbitrary Arrangement 期望、DP

时间:2023-03-09 19:37:30
CF908D New Year and Arbitrary Arrangement 期望、DP

题目传送门

题意:给出正整数$pa,pb,k$,最开始你有一个空串,每一次你有$\frac{pa}{pa + pb}$的概率向串最后放一个$a$,有$\frac{pb}{pa + pb}$的概率向串最后放一个$b$,当串中$ab$子序列的数量$\geq K$时停止,问在操作停止时串中$ab$子序列个数的期望,对$10^9+7$取模。$pa,pb \leq 10^6,k \leq 1000$


设$f_{i,j}$表示当前串内有$i$个$a$,$j$个$ab$子序列的子序列个数期望(至于为什么不是设$a$和$b$,因为实际上$b$影响的是$ab$的数量,而只知道$a$和$b$的多少,$ab$的多少是不确定的)。可以知道转移方程为:$f_{i,j}=f_{i,i+j} \times \frac{pb}{pa+pb} + f_{i+1,j} \times \frac{pa}{pa+pb}$,但是实际上有情况一直放$a$而不放$b$,不依靠一些数学方法状态量会爆炸。

接下来是愉悦的推公式时间~~

我们可以知道当$i+j \geq k$时,只要再放一个$b$就将停止操作,那么我们的期望可以写作$\frac{pb}{pa + pb} \times \sum\limits_{p=0}^\infty [(\frac{pa}{pa + pb})^p \times (i + j + p)]$。不妨设$S = \sum\limits_{p=0}^\infty [(\frac{pa}{pa + pb})^p \times (i + j + p)]$,那么$\frac{pa}{pa + pb}S = \sum\limits_{p=0}^\infty [(\frac{pa}{pa + pb})^{p+1} \times (i + j + p)]$,相减得$\frac{pb}{pa + pb}S = i + j + \sum\limits_{p=1}^\infty (\frac{pa}{pa + pb})^p$,又由无穷递减等比数列公式得$\sum\limits_{p=1}^\infty (\frac{pa}{pa + pb})^p = \frac{\frac{pa}{pa+pb}}{1-\frac{pa}{pa+pb}}=\frac{pa}{pb}$,所以我们需要求的期望就是$i+j+\frac{pa}{pb}$

 #include<bits/stdc++.h>
 #define MOD 1000000007
 #define ll long long
 #define MAXN 1001
 using namespace std;

 ll dp[MAXN][MAXN];
 int K , pa , pb;

 inline ll ksm(ll a , ll b){
     ll times = ;
     while(b){
         )
             times = times * a % MOD;
         a = a * a % MOD;
         b >>= ;
     }
     return times;
 }

 inline ll calc(ll a , ll b){
     if(a + b < K)
         return dp[a][b];
     else
         )) % MOD;
 }

 int main(){
     cin >> K >> pa >> pb;
      ; i >=  ; i--)
          ; j ; j--)
             dp[i][j] = (calc(i + j , j) * pb + pa * calc(i , j + )) % MOD * ksm(pa + pb , MOD - ) % MOD;
     cout << calc( , );
     ;
 }