bzoj 2510: 弱题 循环矩阵

时间:2023-03-10 05:12:44
bzoj 2510: 弱题 循环矩阵

2510: 弱题

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 124  Solved: 61
[Submit][Status][Discuss]

Description

M个球,一开始每个球均有一个初始标号,标号范围为1~N且为整数,标号为i的球有ai个,并保证Σai = M
每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为kk < N),则将它重新标号为k + 1;若这个球标号为N,则将其重标号为1。(取出球后并不将其丢弃)
现在你需要求出,经过K次这样的操作后,每个标号的球的期望个数。

Input

第1行包含三个正整数NMK,表示了标号与球的个数以及操作次数。
第2行包含N非负整数ai,表示初始标号为i的球有ai个。

Output

应包含N行,第i行为标号为i的球的期望个数,四舍五入保留3位小数。

Sample Input

2 3 2
3 0

Sample Output

1.667
1.333

HINT

【样例说明】

第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。

第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球
有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。

【数据规模与约定】

对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;

对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;

对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;

对于40%的数据,M ≤ 1000, K ≤ 1000;

对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。

  这道题有两种解法,一中是预处理每一个位置经过k次到达另外位置的概率,七中运用到了类似于倍增的方法,求经过2^i次转移后的概率数组,然后在计算k次。

  另一种解法在网上已经有提到,观察转移矩阵是一个“循环矩阵”,即每一行都是上一行通过右移得到,循环矩阵A、B满足A*B=C,那么C也是循环矩阵,则这样的矩阵做乘法只用O(n^2),原因是一个矩阵只需要O(n)的空间就可以储存,而答案矩阵每一个元素都能用乘数矩阵通过O(n^2)错位相乘得出,具体细节自行脑补。总之我觉得非常神奇。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define MAXN 1099
typedef double real;
int n,m,tt;
real mat[MAXN];
real res[MAXN];
real tmp[MAXN];
real ans[MAXN];
int tot[MAXN];
void mul(real res[],real m1[],real m2[])
{
memset(res,,sizeof(real)*MAXN);
for (int i=;i<m;i++)
for (int j=;j<m;j++)
res[(i+j+m)%m]+=m1[i]*m2[j];
} int main()
{
//freopen("input.txt","r",stdin);
scanf("%d%d%d",&m,&n,&tt);
for (int i=;i<m;i++)
scanf("%d",tot+i);
mat[]=1.0/n;
mat[]=(n-1.0)/n;
res[]=;
while (tt)
{
if (tt&)
{
mul(tmp,res,mat);
memcpy(res,tmp,sizeof(tmp));
}
mul(tmp,mat,mat);
memcpy(mat,tmp,sizeof(tmp));
tt>>=;
}
for (int i=;i<m;i++)
{
for (int j=;j<m;j++)
{
ans[i]+=tot[j]*res[(i-j+m)%m];
}
printf("%.3lf\n",ans[i]);
}
return ;
}