uva1416 dijkstra

时间:2023-03-09 14:54:53
uva1416 dijkstra

大白书P330 这题比较麻烦

给出一个n个节点m条边的无向图,每条边上有一个正权。令c等于每对节点的最短路长度之和。例n=3时, c = d(1,1)+d(1,2)+d(1,3)+d(2,1)+d(2,2)+d(2,3)+d(3,1)+d(3,2)+d(3,3);

要求删除一条边后使得新的c值c‘最大。不连通的两点的最短路径长度为L

// LA4080/UVa1416 Warfare And Logistics
// Rujia Liu
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std; const int INF = ;
const int maxn = + ; struct Edge {
int from, to, dist;
}; struct HeapNode {
int d, u;
bool operator < (const HeapNode& rhs) const {
return d > rhs.d;
}
}; struct Dijkstra {
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
bool done[maxn]; // 是否已永久标号
int d[maxn]; // s到各个点的距离
int p[maxn]; // 最短路中的上一条弧 void init(int n) {
this->n = n;
for(int i = ; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int dist) {
edges.push_back((Edge){from, to, dist});
m = edges.size();
G[from].push_back(m-);
} void dijkstra(int s) {
priority_queue<HeapNode> Q;
for(int i = ; i < n; i++) d[i] = INF;
d[s] = ;
memset(done, , sizeof(done));
Q.push((HeapNode){, s});
while(!Q.empty()) {
HeapNode x = Q.top(); Q.pop();
int u = x.u;
if(done[u]) continue;
done[u] = true;
for(int i = ; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(e.dist > && d[e.to] > d[u] + e.dist) { // 此处和模板不同,忽略了dist=-1的边。此为删除标记。根据题意和dijkstra算法的前提,正常的边dist>0
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
Q.push((HeapNode){d[e.to], e.to});
}
}
}
}
}; //////// 题目相关
Dijkstra solver;
int n, m, L;
vector<int> gr[maxn][maxn]; // 两点之间的原始边权
int used[maxn][maxn][maxn]; // used[src][a][b]表示源点为src的最短路树是否包含边a->b
int idx[maxn][maxn]; // idx[u][v]为边u->v在Dijkstra求解器中的编号
int sum_single[maxn]; // sum_single[src]表示源点为src的最短路树的所有d之和 int compute_c() {
int ans = ;
memset(used, , sizeof(used));
for(int src = ; src < n; src++) {
solver.dijkstra(src);
sum_single[src] = ;
for(int i = ; i < n; i++) {
if(i != src) {
int fa = solver.edges[solver.p[i]].from;
used[src][fa][i] = used[src][i][fa] = ;
}
sum_single[src] += (solver.d[i] == INF ? L : solver.d[i]);
}
ans += sum_single[src];
}
return ans;
} int compute_newc(int a, int b) {
int ans = ;
for(int src = ; src < n; src++)
if(!used[src][a][b]) ans += sum_single[src];
else {
solver.dijkstra(src);
for(int i = ; i < n; i++)
ans += (solver.d[i] == INF ? L : solver.d[i]);
}
return ans;
} int main() {
while(scanf("%d%d%d", &n, &m, &L) == ) {
solver.init(n);
for(int i = ; i < n; i++)
for(int j = ; j < n; j++) gr[i][j].clear(); for(int i = ; i < m; i++) {
int a, b, s;
scanf("%d%d%d", &a, &b, &s); a--; b--;
gr[a][b].push_back(s);
gr[b][a].push_back(s);
} // 构造网络
for(int i = ; i < n; i++)
for(int j = i+; j < n; j++) if(!gr[i][j].empty()) {
sort(gr[i][j].begin(), gr[i][j].end());
solver.AddEdge(i, j, gr[i][j][]);
idx[i][j] = solver.m - ;
solver.AddEdge(j, i, gr[i][j][]);
idx[j][i] = solver.m - ;
} int c = compute_c();
int c2 = -;
for(int i = ; i < n; i++)
for(int j = i+; j < n; j++) if(!gr[i][j].empty()) {
int& e1 = solver.edges[idx[i][j]].dist;
int& e2 = solver.edges[idx[j][i]].dist;
if(gr[i][j].size() == ) e1 = e2 = -;
else e1 = e2 = gr[i][j][]; // 大二短边
c2 = max(c2, compute_newc(i, j));
e1 = e2 = gr[i][j][]; // 恢复
} printf("%d %d\n", c, c2);
}
return ;
}