3123: [Sdoi2013]森林
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 4813 Solved: 1420
[Submit][Status][Discuss]
Description
Input
第一行包含一个正整数testcase,表示当前测试数据的测试点编号。保证1≤testcase≤20。
第二行包含三个整数N,M,T,分别表示节点数、初始边数、操作数。第三行包含N个非负整数表示 N个节点上的权值。
接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为“Q x y k”或者“L x y ”,其含义见题目描述部分。
Output
对于每一个第一类操作,输出一个非负整数表示答案。
Sample Input
8 4 8
1 1 2 2 3 3 4 4
4 7
1 8
2 4
2 1
Q 8 7 3 Q 3 5 1
Q 10 0 0
L 5 4
L 3 2 L 0 7
Q 9 2 5 Q 6 1 6
Sample Output
2
1
4
2
HINT
对于第一个操作 Q 8 7 3,此时 lastans=0,所以真实操作为Q 8^0 7^0 3^0,也即Q 8 7 3。点8到点7的路径上一共有5个点,其权值为4 1 1 2 4。这些权值中,第三小的为 2,输出 2,lastans变为2。对于第二个操作 Q 3 5 1 ,此时lastans=2,所以真实操作为Q 3^2 5^2 1^2 ,也即Q 1 7 3。点1到点7的路径上一共有4个点,其权值为 1 1 2 4 。这些权值中,第三小的为2,输出2,lastans变为 2。之后的操作类似。
思路:题意输入的case不要管,此题不是多组输入。 我们求路径第k大,优先会想到主席树,但是这里有合并的操作,事实上启发式够用了。
至于倍增LCA,我们可以dfs的时候就维护。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
struct in{
int l,r,sum;
in(){l=r=sum=;}
in(int L,int R,int S):l(L),r(R),sum(S){}
}s[];
int Laxt[maxn],Next[maxn<<],To[maxn<<],rt[maxn],cnt,scc_cnt,N,ans;
int a[maxn],b[maxn],fa[maxn][],tot,scc[maxn],sz[maxn],dep[maxn],num;
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=x*+c-'',c=getchar();
}
void add(int u,int v){ Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v;}
void update(int &Now,int pre,int L,int R,int pos)
{
Now=++num; s[Now]=s[pre]; s[Now].sum++;
if(L==R) return ; int Mid=(L+R)>>;
if(pos<=Mid) update(s[Now].l,s[pre].l,L,Mid,pos);
else update(s[Now].r,s[pre].r,Mid+,R,pos);
}
void dfs(int u,int f,int p)
{
update(rt[u],rt[f],,tot,a[u]); dep[u]=dep[f]+;
fa[u][]=f; scc[u]=p; sz[p]++;
rep(j,,) fa[u][j]=fa[fa[u][j-]][j-];
for(int i=Laxt[u];i;i=Next[i]) if(To[i]!=f) dfs(To[i],u,p);
}
void Connect(int x,int y)
{
if(sz[scc[x]]<sz[scc[y]]) swap(x,y);
dfs(y,x,scc[x]);
}
int query(int u,int v,int Lca,int old,int L,int R,int k)
{
if(L==R) return L; int Mid=(L+R)>>;
int tmp=s[s[u].l].sum+s[s[v].l].sum-s[s[Lca].l].sum-s[s[old].l].sum;
if(tmp>=k) return query(s[u].l,s[v].l,s[Lca].l,s[old].l,L,Mid,k);
return query(s[u].r,s[v].r,s[Lca].r,s[old].r,Mid+,R,k-tmp);
}
int LCA(int u,int v)
{
if(dep[u]<dep[v]) swap(u,v);
for(int i=;i>=;i--) if(dep[fa[u][i]]>=dep[v]) u=fa[u][i];
if(u==v) return u;
for(int i=;i>=;i--) if(fa[u][i]!=fa[v][i]) u=fa[u][i],v=fa[v][i];
return fa[u][];
}
void Query(int u,int v,int k)
{
int Lca=LCA(u,v);
ans=b[query(rt[u],rt[v],rt[Lca],rt[fa[Lca][]],,tot,k)];
printf("%d\n",ans);
}
int main()
{
int C,M,T,u,v,x,y,k;
scanf("%d%d%d%d",&C,&N,&M,&T);
rep(i,,N) read(a[i]),b[i]=a[i];
sort(b+,b+N+); tot=unique(b+,b+N+)-(b+);
rep(i,,N) a[i]=lower_bound(b+,b+tot+,a[i])-b;
rep(i,,M){
read(u); read(v);
add(u,v); add(v,u);
}
char opt[];
rep(i,,N) if(!scc[i]) dfs(i,,++scc_cnt);
while(T--){
scanf("%s",opt);
if(opt[]=='Q'){
read(x); read(y); read(k);
x=ans^x; y=ans^y; k=ans^k;
Query(x,y,k);
}
else {
scanf("%d%d",&x,&y);
x=ans^x; y=ans^y; add(x,y); add(y,x);
Connect(x,y);
}
}
return ;
}