AndroidO bluedroid alarm 机制分析

时间:2023-03-09 13:08:42
AndroidO bluedroid alarm 机制分析

bluedroid的alarm 机制实现在osi/osi/src/alarm.cc 中:

这里面实现了很多的接口:

alarm_t* alarm_new(const char* name);
alarm_t* alarm_new_periodic(const char* name) ;
static alarm_t* alarm_new_internal(const char* name, bool is_periodic) ;
void alarm_free(alarm_t* alarm);
void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
void* data) ;
void alarm_cancel(alarm_t* alarm);
void alarm_cleanup(void);
static bool lazy_initialize(void) ;

我们先看一个使用alarm 的事例:

在hci_layer.cc 文件中关于hci_module_start_up 的实现:

 startup_timer = alarm_new("hci.startup_timer");
...
alarm_set(startup_timer, startup_timeout_ms, startup_timer_expired, NULL); 

当startup_timeout_ms 时间到达的时候,如果startup_timer还没有被取消的话,那么startup_timer_expired函数将会被执行。

我们具体看看 其实现的过程:

我们先看看新建定时器的代码:

alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
// Make sure we have a list we can insert alarms into.
if (!alarms && !lazy_initialize()) { //最初alarm 还没有初始化,需要执行初始化流程
CHECK(false); // if initialization failed, we should not continue
return NULL;
} alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t))); ret->callback_mutex = new std::recursive_mutex;
ret->is_periodic = is_periodic;
ret->stats.name = osi_strdup(name);
// NOTE: The stats were reset by osi_calloc() above return ret;
}

我们继续看看 lazy_initialize  是如何 初始化的:

static bool lazy_initialize(void) {

  bool timer_initialized = false;
bool wakeup_timer_initialized = false; std::lock_guard<std::mutex> lock(alarms_mutex); alarms = list_new(NULL); if (!timer_create_internal(CLOCK_ID, &timer)) goto error;//timer_create
timer_initialized = true; if (!timer_create_internal(CLOCK_ID_ALARM, &wakeup_timer)) goto error;
wakeup_timer_initialized = true; alarm_expired = semaphore_new();//新建信号量 default_callback_thread =
thread_new_sized("alarm_default_callbacks", SIZE_MAX);//新建线程 thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);//提高线程优先级
default_callback_queue = fixed_queue_new(SIZE_MAX);//新建队列 alarm_register_processing_queue(default_callback_queue,
default_callback_thread);//将线程和队列绑定 dispatcher_thread_active = true;
dispatcher_thread = thread_new("alarm_dispatcher");//新建定时器分发线程,该线程不停运行while(true) thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
thread_post(dispatcher_thread, callback_dispatch, NULL);//运行callback_dispatch
return true; error:
...
return false;
}

这里有两个线程,一个是dispatcher_thread,它一直轮询,如果有定时器到期那么他就将这个定时器放到一个(当初创建啊定时器的时候关联的队列)特定的队列里面,默认的就是default_callback_queue ,然后由另外一个线程default_callback_thread 来处理该队列里面的已经expire的定时器.

我们看看timer_create_internal的实现:

static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
CHECK(timer != NULL); struct sigevent sigevent;
// create timer with RT priority thread
pthread_attr_t thread_attr;
pthread_attr_init(&thread_attr);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
struct sched_param param;
param.sched_priority = THREAD_RT_PRIORITY;
pthread_attr_setschedparam(&thread_attr, &param); memset(&sigevent, , sizeof(sigevent));
sigevent.sigev_notify = SIGEV_THREAD;
sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;//发送信号量
sigevent.sigev_notify_attributes = &thread_attr;
if (timer_create(clock_id, &sigevent, timer) == -) { //创建定时器
/*错误处理*/
}
return false;
} return true;
}

这里我们注意到,当定时器到期的时候,会执行timer_callback,其就是发送了一个alarm_expired的信号量:

static void timer_callback(UNUSED_ATTR void* ptr) {
semaphore_post(alarm_expired);
}

这里有发送信号量,那么一定有一个地方会等待这个信号量,就是在定时器的不断等待的线程里面:

static void callback_dispatch(UNUSED_ATTR void* context) {
while (true) {
semaphore_wait(alarm_expired);//一直循环等待信号量
...
}
}

lazy_initialize   初始化完成之后,定时器并没有启动,只是创建了定时器.那是在哪里启动的呢?根据我们上面展示出的使用示例,在alarm_set 肯定是有启动定时器的操作的:

void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
void* data) {
alarm_set_on_queue(alarm, interval_ms, cb, data, default_callback_queue);
}

这里发现 调用alarm_set 传入的 队列都是default_callback_queue,

void alarm_set_on_queue(alarm_t* alarm, period_ms_t interval_ms,
alarm_callback_t cb, void* data, fixed_queue_t* queue) {
CHECK(queue != NULL);
alarm_set_internal(alarm, interval_ms, cb, data, queue);
}
// Runs in exclusion with alarm_cancel and timer_callback.
static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
alarm_callback_t cb, void* data,
fixed_queue_t* queue) { std::lock_guard<std::mutex> lock(alarms_mutex); alarm->creation_time = now();
alarm->period = period;
alarm->queue = queue;
alarm->callback = cb;
alarm->data = data; schedule_next_instance(alarm);
alarm->stats.scheduled_count++;
}

上面是对定时器进行封装以及赋值,然后调用schedule_next_instance 来启动 定时器:

// Must be called with |alarms_mutex| held
static void schedule_next_instance(alarm_t* alarm) {
// If the alarm is currently set and it's at the start of the list,
// we'll need to re-schedule since we've adjusted the earliest deadline.
bool needs_reschedule =
(!list_is_empty(alarms) && list_front(alarms) == alarm);//如果alarms 队列第一个元素就是这个定时器,那么需要重启schedule
if (alarm->callback) remove_pending_alarm(alarm);//取出所有的pending,重复的alarm // Calculate the next deadline for this alarm
period_ms_t just_now = now();
period_ms_t ms_into_period = ;
if ((alarm->is_periodic) && (alarm->period != ))
ms_into_period = ((just_now - alarm->creation_time) % alarm->period);
alarm->deadline = just_now + (alarm->period - ms_into_period); // Add it into the timer list sorted by deadline (earliest deadline first).//以下是给alarm排序,插入到某个合适的问题,最近的alarm 排在第一个
if (list_is_empty(alarms) ||
((alarm_t*)list_front(alarms))->deadline > alarm->deadline) {
list_prepend(alarms, alarm);
} else {
for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
node = list_next(node)) {
list_node_t* next = list_next(node);
if (next == list_end(alarms) ||
((alarm_t*)list_node(next))->deadline > alarm->deadline) {
list_insert_after(alarms, node, alarm);
break;
}
}
} // If the new alarm has the earliest deadline, we need to re-evaluate our
// schedule.
if (needs_reschedule ||
(!list_is_empty(alarms) && list_front(alarms) == alarm)) {
reschedule_root_alarm();
}
}

上面主要就是将alarm插入到 alarms 列表中,等待schedule,如果当前这个alarm 就是最紧迫的alarm,那么就会立即进行 schedule.

我们看看其实现reschedule_root_alarm;

// NOTE: must be called with |alarms_mutex| held
static void reschedule_root_alarm(void) {
CHECK(alarms != NULL); const bool timer_was_set = timer_set;
alarm_t* next;
int64_t next_expiration; // If used in a zeroed state, disarms the timer.
struct itimerspec timer_time;
memset(&timer_time, , sizeof(timer_time)); if (list_is_empty(alarms)) goto done; next = static_cast<alarm_t*>(list_front(alarms));
next_expiration = next->deadline - now();
if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {//如果deadline<3s> timer_time.it_value.tv_sec = (next->deadline / );
timer_time.it_value.tv_nsec = (next->deadline % ) * 1000000LL; /*下面设置最长的wake_up 是为了减少删除该timer的开销,可以略过*/
struct itimerspec end_of_time;
memset(&end_of_time, , sizeof(end_of_time));
end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * - ));
timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
} else {
// WARNING: do not attempt to use relative timers with *_ALARM clock IDs
// in kernels before 3.17 unless you have the following patch:
// https://lkml.org/lkml/2014/7/7/576
struct itimerspec wakeup_time;
memset(&wakeup_time, , sizeof(wakeup_time)); wakeup_time.it_value.tv_sec = (next->deadline / );
wakeup_time.it_value.tv_nsec = (next->deadline % ) * 1000000LL;
if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -)
LOG_ERROR(LOG_TAG, "%s unable to set wakeup timer: %s", __func__,
strerror(errno));
} done:
timer_set =
timer_time.it_value.tv_sec != || timer_time.it_value.tv_nsec != ;
if (timer_was_set && !timer_set) {
wakelock_release();
} if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -)
LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));//设置定时器 // If next expiration was in the past (e.g. short timer that got context
// switched) then the timer might have diarmed itself. Detect this case and
// work around it by manually signalling the |alarm_expired| semaphore.
//
// It is possible that the timer was actually super short (a few
// milliseconds) and the timer expired normally before we called
// |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
// alarm. Nothing bad should happen in that case though since the callback
// dispatch function checks to make sure the timer at the head of the list
// actually expired.
if (timer_set) {
struct itimerspec time_to_expire;
timer_gettime(timer, &time_to_expire);
if (time_to_expire.it_value.tv_sec == &&
time_to_expire.it_value.tv_nsec == ) { semaphore_post(alarm_expired);//如果定时器的时机已经到了,那么直接发送信号量
}
}
}

代码是实现是 在离expire 不到3s的时候启动定时器.

当定时器时间到的时候,发动alarm_expired的信号.

我们接下来看看 定时器的 已经到期的处理流程:上面我们已经知道,线程dispatcher_thread一直轮询,我们看看其实现:

// Function running on |dispatcher_thread| that performs the following:
// (1) Receives a signal using |alarm_exired| that the alarm has expired
// (2) Dispatches the alarm callback for processing by the corresponding
// thread for that alarm.
static void callback_dispatch(UNUSED_ATTR void* context) {
while (true) {
semaphore_wait(alarm_expired);//等待expire的信号量
if (!dispatcher_thread_active) break; std::lock_guard<std::mutex> lock(alarms_mutex);
alarm_t* alarm; // Take into account that the alarm may get cancelled before we get to it.
// We're done here if there are no alarms or the alarm at the front is in
// the future. Exit right away since there's nothing left to do.
if (list_is_empty(alarms) ||
(alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline > now()) {
reschedule_root_alarm();
continue;
} list_remove(alarms, alarm);//remove 该alarm 从队列中 if (alarm->is_periodic) {
alarm->prev_deadline = alarm->deadline;
schedule_next_instance(alarm);
alarm->stats.rescheduled_count++;
}
reschedule_root_alarm();//去启动下一个定时器 // Enqueue the alarm for processing
fixed_queue_enqueue(alarm->queue, alarm);//将该expire的定时器放到相应队列等待处理
} LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
}

这个函数做的事情,就像其名字一样,收到expire的信号之后,做一个dispatch的动作,我们接下来看看放置到队列之后如何处理的.

这里我们还要看一下当时队列和线程绑定的情况:

void alarm_register_processing_queue(fixed_queue_t* queue, thread_t* thread) {
CHECK(queue != NULL);
CHECK(thread != NULL); fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
alarm_queue_ready, NULL);
}

我们看看alarm_queue_ready:

static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
CHECK(queue != NULL); std::unique_lock<std::mutex> lock(alarms_mutex);
alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
if (alarm == NULL) {
return; // The alarm was probably canceled
} //
// If the alarm is not periodic, we've fully serviced it now, and can reset
// some of its internal state. This is useful to distinguish between expired
// alarms and active ones.
//
alarm_callback_t callback = alarm->callback;
void* data = alarm->data;
period_ms_t deadline = alarm->deadline;
if (alarm->is_periodic) {
// The periodic alarm has been rescheduled and alarm->deadline has been
// updated, hence we need to use the previous deadline.
deadline = alarm->prev_deadline;
} else {
alarm->deadline = ;
alarm->callback = NULL;
alarm->data = NULL;
alarm->queue = NULL;
} std::lock_guard<std::recursive_mutex> cb_lock(*alarm->callback_mutex);
lock.unlock(); period_ms_t t0 = now();
callback(data);//执行callback 函数,并reset alarm
period_ms_t t1 = now(); // Update the statistics
CHECK(t1 >= t0);
period_ms_t delta = t1 - t0;
update_scheduling_stats(&alarm->stats, t0, deadline, delta);
}

上面流程的核心 就是 取出队列中的alarm,并执行其中的callback,也就是我们开定时器的时候的回调函数.

关于定时器的介绍,就到这里.