题目大意
给定国际象棋8x8棋盘上三个起始点,三个骑士分别从三个起始点开始移动(骑士只能走日字,且骑士从任意一点出发可以走遍整个棋盘)。现要求三个骑士汇聚到棋盘上某个点,且使得骑士到达该点所移动的次数总和最小。求该最小移动次数。
题目连接:骑士问题
题目分析
典型的搜索,最短路径可以使用BFS。骑士数只有三个,因此可以求出每个骑士到达棋盘上所有点的移动的次数,再遍历一遍棋盘,求出最小次数和。
实现
#pragma once
#pragma execution_character_set("utf-8")
// 本文件为utf-8 编码格式
#include<iostream>
#include<string.h>
#include<stdio.h>
#include<unordered_map>
#include<unordered_set>
#include<string>
#include<stack>
#include<queue>
using namespace std;
struct Node{
int x, y, step;
Node(int xx, int yy, int s) :x(xx), y(yy), step(s){};
};
int move_step[9][9][3];
bool visited[9][9];
int move_inc[8][2] = { { -2, -1 }, { -2, 1 }, { -1, 2 }, { 1, 2 }, { 2, 1 }, { 2, -1 }, { 1, -2 }, { -1, -2 } };
void Bfs(int start_x, int start_y, int knight){
memset(visited, false, sizeof(visited));
queue<Node> Q;
Node node(start_x, start_y, 0);
Q.push(node);
visited[start_x][start_y] = true;
while (!Q.empty()){
node = Q.front();
Q.pop();
move_step[node.x][node.y][knight] = node.step;
for (int i = 0; i < 8; i++){
int next_x = node.x + move_inc[i][0];
int next_y = node.y + move_inc[i][1];
if (next_x >= 1 && next_x <= 8 &&
next_y >= 1 && next_y <= 8 &&
!visited[next_x][next_y]){
visited[next_x][next_y] = true;
Q.push(Node(next_x, next_y, node.step + 1));
}
}
}
}
void Init(){
memset(move_step, -1, sizeof(move_step));
}
int MinStep(){
int min = 1 << 30;
for (int r = 1; r <= 8; r++){
for (int c = 1; c <= 8; c++){
min = min < (move_step[r][c][0] + move_step[r][c][1] + move_step[r][c][2]) ?
min : (move_step[r][c][0] + move_step[r][c][1] + move_step[r][c][2]);
}
}
return min;
}
int main(){
int T;
char row, col;
scanf("%d", &T);
int start_x[3];
int start_y[3]; while (T--){
for (int i = 0; i < 3; i++){
getchar();
scanf("%c%c", &row, &col);
start_x[i] = row - 'A' + 1;
start_y[i] = col - '0';
}
for (int i = 0; i < 3; i++){
Bfs(start_x[i], start_y[i], i);
}
int result = MinStep();
printf("%d\n", result);
}
return 0;
}