PL-SVO公式推导及代码解析:地图点重投影和特征对齐

时间:2023-03-09 19:11:33
PL-SVO公式推导及代码解析:地图点重投影和特征对齐

对当前帧进行地图点重投影和特征对齐

  // map reprojection & feature alignment
SVO_START_TIMER("reproject");
reprojector_.reprojectMap(new_frame_, overlap_kfs_);
SVO_STOP_TIMER("reproject");

在processframe函数中在进行初始的稀疏图像对齐之后,进一步进行地图投影和特征对齐,对新一帧图像添加特征点,由reprojectMap接口进入

Reprojector reprojector_; //把其它关键帧中的点投影到当前帧中

FramePtr new_frame_;  // 当前帧
vector< pair<FramePtr,size_t> > overlap_kfs_;  // 具有重叠视野的所有关键帧。 配对数字指明观察到的公共地图点数。
void Reprojector::reprojectMap(
FramePtr frame,
std::vector< std::pair<FramePtr,std::size_t> >& overlap_kfs)
{
resetReprojGrid();
resetReprojGrid(); // 重置函数
  // Identify those Keyframes which share a common field of view.
SVO_START_TIMER("reproject_kfs");
list< pair<FramePtr,double> > close_kfs;
map_.getCloseKeyframes(frame, close_kfs);

void Map::getCloseKeyframes(
const FramePtr& frame,
std::list< std::pair<FramePtr,double> >& close_kfs);

const FramePtr& frame;    //当前图像帧

std::list< std::pair<FramePtr,double> >& close_kfs  ;///存储和当前帧接近的关键帧指针以及它们之间的距离。

根据它们的接近程度对KF进行重叠排序(列表中的第二个值)
  close_kfs.sort(boost::bind(&std::pair<FramePtr, double>::second, _1) <
boost::bind(&std::pair<FramePtr, double>::second, _2));

重新投影具有重叠的最近N kfs的所有地图特征。

  size_t n_kfs = ;
overlap_kfs.reserve(options_.max_n_kfs);
for(auto it_frame=close_kfs.begin(), ite_frame=close_kfs.end();
it_frame!=ite_frame && n_kfs<options_.max_n_kfs; ++it_frame, ++n_kfs)
{
FramePtr ref_frame = it_frame->first;
// add the current frame to the (output) list of keyframes with overlap
// initialize the counter of candidates from this frame (2nd element in pair) to zero
overlap_kfs.push_back(pair<FramePtr,size_t>(ref_frame,));
// Consider for candidate each mappoint in the ref KF that the current (input) KF observes
// We only store in which grid cell the points fall.
// Add each corresponding valid new Candidate to its cell in the grid.
int num_pt_success = setKfCandidates( frame, ref_frame->pt_fts_ );
overlap_kfs.back().second += num_pt_success;
// Add each line segment in the ref KF that the current (input) KF observes
int num_seg_success = setKfCandidates( frame, ref_frame->seg_fts_ );
overlap_kfs.back().second += num_seg_success;
}
SVO_STOP_TIMER("reproject_kfs");
考虑当前(输入)KF观察到的参考KF中的每个mappoint的候选者

我们只存储点落在哪个网格单元格中。

将每个对应的有效新Candidate添加到网格中的单元格中。

template<class FeatureT>
int Reprojector::setKfCandidates(FramePtr frame, list<FeatureT*> fts)
{
int candidate_counter = ;
for(auto it=fts.begin(), ite_ftr=fts.end(); it!=ite_ftr; ++it)
{
// check if the feature has a 3D object assigned
if((*it)->feat3D == NULL)
continue;
// make sure we project a point only once
if((*it)->feat3D->last_projected_kf_id_ == frame->id_)
continue;
(*it)->feat3D->last_projected_kf_id_ = frame->id_;
if(reproject(frame, (*it)->feat3D))
// increment the number of candidates taken successfully
candidate_counter++;
}
return candidate_counter;
}

int Reprojector::setKfCandidates(FramePtr frame, list<FeatureT*> fts)

把地图点和投影到当前帧中的像素点的匹配对存储到  grid_.cells 中

 
bool Reprojector::reproject(FramePtr frame, Point* point)
{
// get position in current frame image of the world 3D point
Vector2d cur_px(frame->w2c(point->pos_));
if(frame->cam_->isInFrame(cur_px.cast<int>(), )) // 8px is the patch size in the matcher
{
// get linear index (wrt row-wise vectorized grid matrix)
// of the image grid cell in which the point px lies
const int k = static_cast<int>(cur_px[]/grid_.cell_size)*grid_.grid_n_cols
+ static_cast<int>(cur_px[]/grid_.cell_size);
grid_.cells.at(k)->push_back(PointCandidate(point, cur_px));
return true;
}
return false;
}

数据类型的定义

  struct PointCandidate {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Point* pt; //!< 3D point.
Vector2d px; //!< projected 2D pixel location.
PointCandidate(Point* pt, Vector2d& px) : pt(pt), px(px) {}
};
  // A cell is just a list of Reprojector::Candidate
typedef std::list<PointCandidate, aligned_allocator<PointCandidate> > Cell;
typedef std::vector<Cell*> CandidateGrid; struct LineCandidate {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
LineSeg* ls; //!< 3D point.
Vector2d spx;
Vector2d epx;
LineCandidate(LineSeg* ls, Vector2d& spx, Vector2d& epx) : ls(ls), spx(spx), epx(epx) {}
};
  /// The candidate segments are collected in a single list for the whole image.
/// There is no clear heuristic about how to discretize the image space for the segment case.
typedef std::list<LineCandidate, aligned_allocator<LineCandidate> > LineCandidates;
typedef std::vector<LineCandidates*> LineCandidateGrid; /// The grid stores a set of candidate matches. For every grid cell we try to find one match.
struct Grid
{
CandidateGrid cells;
vector<int> cell_order;
int cell_size;
int grid_n_cols;
int grid_n_rows;
}; struct GridLs
{
LineCandidateGrid cells;
vector<int> cell_order;
int cell_size;
int grid_n_cols;
int grid_n_rows;
}; Grid grid_;
GridLs gridls_;
Matcher matcher_;
Map& map_;

现在投影所有地图坐标

点坐标

  // Now project all map candidates
// (candidates in the map are created from converged seeds)
SVO_START_TIMER("reproject_candidates");
// Point candidates
// (same logic as above to populate the cell grid but taking candidate points from the map object)
setMapCandidates(frame, map_.point_candidates_);

线坐标

  // Segment candidates
setMapCandidates(frame, map_.segment_candidates_);
SVO_STOP_TIMER("reproject_candidates");

Map&    map_;  //地图类

MapPointCandidates point_candidates_;   //  收敛的3D点的容器,尚未分配给两个关键帧。

MapSegmentCandidates segment_candidates_;    /////尚未分配给两个关键帧的融合3D点的容器。

class MapPointCandidates
{
public:
typedef pair<Point*, PointFeat*> PointCandidate;
typedef list<PointCandidate> PointCandidateList; /// The depth-filter is running in a parallel thread and fills the canidate list.
/// This mutex controls concurrent access to point_candidates.
boost::mutex mut_; /// Candidate points are created from converged seeds.
/// Until the next keyframe, these points can be used for reprojection and pose optimization.
PointCandidateList candidates_;
list< Point* > trash_points_; MapPointCandidates();
~MapPointCandidates(); /// Add a candidate point.
void newCandidatePoint(Point* point, double depth_sigma2); /// Adds the feature to the frame and deletes candidate from list.
void addCandidatePointToFrame(FramePtr frame); /// Remove a candidate point from the list of candidates.
bool deleteCandidatePoint(Point* point); /// Remove all candidates that belong to a frame.
void removeFrameCandidates(FramePtr frame); /// Reset the candidate list, remove and delete all points.
void reset(); void deleteCandidate(PointCandidate& c); void emptyTrash();
};
void MapPointCandidates::deleteCandidate(PointCandidate& c)
{
// camera-rig: another frame might still be pointing to the candidate point
// therefore, we can't delete it right now.
delete c.second; c.second=NULL;
c.first->type_ = Point::TYPE_DELETED;
trash_points_.push_back(c.first);
}

template<class MapCandidatesT>
void Reprojector::setMapCandidates(FramePtr frame, MapCandidatesT &map_candidates)
{
boost::unique_lock<boost::mutex> lock(map_candidates.mut_); // the mutex will be unlocked when out of scope
auto it=map_candidates.candidates_.begin();
while(it!=map_candidates.candidates_.end())
{
if(!reproject(frame, it->first))
{
// if the reprojection of the map candidate point failed,
// increment the counter of failed reprojections (assess the point quality)
it->first->n_failed_reproj_ += ;
if(it->first->n_failed_reproj_ > )
{
// if the reprojection failed too many times, remove the map candidate point
map_candidates.deleteCandidate(*it);
it = map_candidates.candidates_.erase(it);
continue;
}
}
++it;
} // end-while-loop
}

现在我们浏览每个网格单元并选择一个匹配点。最后,我们每个细胞最多应该有一个重新投射点。


  SVO_START_TIMER("feature_align");
for(size_t i=; i<grid_.cells.size(); ++i)
{
// we prefer good quality points over unkown quality (more likely to match)
// and unknown quality over candidates (position not optimized)
// we use the random cell order to visit cells uniformly on the grid
if(refineBestCandidate(*grid_.cells.at(grid_.cell_order[i]), frame))
++n_matches_;
if(n_matches_ > (size_t) Config::maxFts())
break; // the random visit order of cells assures uniform distribution
// of the features even if we break early (maxFts reached soon)
}

我们更喜欢质量好的点而不是未知质量(更可能匹配)和未知质量而不是候选者(位置未优化)

我们使用随机单元格顺序在网格上统一访问单元格


bool Reprojector::refineBestCandidate(Cell& cell, FramePtr frame)
{
// sort the candidates inside the cell according to their quality
cell.sort(boost::bind(&Reprojector::pointQualityComparator, _1, _2));
Cell::iterator it=cell.begin();
// in principle, iterate through the whole list of features in the cell
// in reality, there is maximum one point per cell, so the loop returns if successful
while(it!=cell.end())
{
++n_trials_;
// Try to refine the point feature in frame from current initial estimate
bool success = refine( it->pt, it->px, frame );
// Failed or not, this candidate was finally being erased in original code
it = cell.erase(it); // it takes next position in the list as output of .erase
if(success)
// Maximum one point per cell.
return true;
}
return false;
}

尝试从当前初始估计中细化帧中的点要素

bool Reprojector::refine(Point* pt, Vector2d& px_est, FramePtr frame)
{
if(pt->type_ == Point::TYPE_DELETED)
return false; bool found_match = true;
if(options_.find_match_direct)
// refine px position in the candidate by directly applying subpix refinement
// internally, it is optimizing photometric error
// of the candidate px patch wrt the closest-view reference feature patch
found_match = matcher_.findMatchDirect(*pt, *frame, px_est);
// TODO: What happens if options_.find_match_direct is false??? Shouldn't findEpipolarMatchDirect be here? // apply quality logic
{
if(!found_match)
{
// if there is no match found for this point, decrease quality
pt->n_failed_reproj_++;
// consider removing the point from map depending on point type and quality
if(pt->type_ == Point::TYPE_UNKNOWN && pt->n_failed_reproj_ > )
map_.safeDeletePoint(pt);
if(pt->type_ == Point::TYPE_CANDIDATE && pt->n_failed_reproj_ > )
map_.point_candidates_.deleteCandidatePoint(pt);
return false;
}
// if there is successful match found for this point, increase quality
pt->n_succeeded_reproj_++;
if(pt->type_ == Point::TYPE_UNKNOWN && pt->n_succeeded_reproj_ > )
pt->type_ = Point::TYPE_GOOD;
} // create new point feature for this frame with the refined (aligned) candidate position in this image
PointFeat* new_feature = new PointFeat(frame.get(), px_est, matcher_.search_level_);
frame->addFeature(new_feature); // Here we add a reference in the feature to the 3D point, the other way
// round is only done if this frame is selected as keyframe.
// TODO: why not give it directly to the constructor PointFeat(frame.get(), pt, it->px, matcher_.serach_level_)
new_feature->feat3D = pt; PointFeat* pt_ftr = static_cast<PointFeat*>( matcher_.ref_ftr_ );
if(pt_ftr != NULL)
{
if(pt_ftr->type == PointFeat::EDGELET)
{
new_feature->type = PointFeat::EDGELET;
new_feature->grad = matcher_.A_cur_ref_*pt_ftr->grad;
new_feature->grad.normalize();
}
} // If the keyframe is selected and we reproject the rest, we don't have to
// check this point anymore.
// it = cell.erase(it); // Maximum one point per cell.
return true;
}

通过直接应用子像素细化来细化候选者中的px位置

在内部,它正在优化最近视图参考特征补丁的候选px补丁的光度误差

bool Matcher::findMatchDirect(
const Point& pt,
const Frame& cur_frame,
Vector2d& px_cur)
{
// get reference feature in closest view (frame)
if(!pt.getCloseViewObs(cur_frame.pos(), ref_ftr_))
return false; if(!ref_ftr_->frame->cam_->isInFrame(
ref_ftr_->px.cast<int>()/(<<ref_ftr_->level), halfpatch_size_+, ref_ftr_->level))
return false; // warp affine
warp::getWarpMatrixAffine(
*ref_ftr_->frame->cam_, *cur_frame.cam_, ref_ftr_->px, ref_ftr_->f,
(ref_ftr_->frame->pos() - pt.pos_).norm(),
cur_frame.T_f_w_ * ref_ftr_->frame->T_f_w_.inverse(), ref_ftr_->level, A_cur_ref_);
search_level_ = warp::getBestSearchLevel(A_cur_ref_, Config::nPyrLevels()-);
// is img of ref_frame fully available at any time? that means keeping stored previous images, for how long?
warp::warpAffine(A_cur_ref_, ref_ftr_->frame->img_pyr_[ref_ftr_->level], ref_ftr_->px,
ref_ftr_->level, search_level_, halfpatch_size_+, patch_with_border_);
// patch_with_border_ stores the square patch (of pixel intensities) around the reference feature
// once the affine transformation is applied to the original reference image
// the border is necessary for gradient operations (intensities at the border must be precomputed by interpolation too!)
createPatchFromPatchWithBorder(); // px_cur should be set
Vector2d px_scaled(px_cur/(<<search_level_)); bool success = false;
PointFeat* pt_ftr = static_cast<PointFeat*>(ref_ftr_);
if(pt_ftr->type == PointFeat::EDGELET)
{
Vector2d dir_cur(A_cur_ref_*pt_ftr->grad);
dir_cur.normalize();
success = feature_alignment::align1D(
cur_frame.img_pyr_[search_level_], dir_cur.cast<float>(),
patch_with_border_, patch_, options_.align_max_iter, px_scaled, h_inv_);
}
else
{
success = feature_alignment::align2D(
cur_frame.img_pyr_[search_level_], patch_with_border_, patch_,
options_.align_max_iter, px_scaled);
}
px_cur = px_scaled * (<<search_level_);
return success;
}

特征细化

bool align2D(
const cv::Mat& cur_img,
uint8_t* ref_patch_with_border,
uint8_t* ref_patch,
const int n_iter,
Vector2d& cur_px_estimate,
bool no_simd)
{
#ifdef __ARM_NEON__
if(!no_simd)
return align2D_NEON(cur_img, ref_patch_with_border, ref_patch, n_iter, cur_px_estimate);
#endif const int patch_size_ = ;
Patch patch( patch_size_, cur_img );
bool converged=false; /* Precomputation step: derivatives in reference patch */
// compute derivative of template and prepare inverse compositional
float __attribute__((__aligned__())) ref_patch_dx[patch.area];
float __attribute__((__aligned__())) ref_patch_dy[patch.area];
Matrix3f H; H.setZero(); // compute gradient and hessian
const int ref_step = patch_size_+; // assumes ref_patch_with_border comes from a specific Mat object with certain size!!! Bad way to do it?
float* it_dx = ref_patch_dx;
float* it_dy = ref_patch_dy;
for(int y=; y<patch_size_; ++y)
{
uint8_t* it = ref_patch_with_border + (y+)*ref_step + ;
for(int x=; x<patch_size_; ++x, ++it, ++it_dx, ++it_dy)
{
Vector3f J;
J[] = 0.5 * (it[] - it[-]);
J[] = 0.5 * (it[ref_step] - it[-ref_step]);
J[] = ;
*it_dx = J[];
*it_dy = J[];
H += J*J.transpose();
}
}
Matrix3f Hinv = H.inverse();
float mean_diff = ; /* Iterative loop: residues and updates with patch in current image */
// Compute pixel location in new image:
float u = cur_px_estimate.x();
float v = cur_px_estimate.y(); // termination condition
const float min_update_squared = 0.03*0.03;
const int cur_step = cur_img.step.p[];
// float chi2 = 0;
Vector3f update; update.setZero();
for(int iter = ; iter<n_iter; ++iter)
{
// TODO very rarely this can happen, maybe H is singular? should not be at corner.. check
// if(isnan(cur_px_estimate[0]) || isnan(cur_px_estimate[1]))
// return false; // set patch position for current feature location
patch.setPosition( cur_px_estimate );
// abort the optimization if the patch does not fully lie within the image
if(!patch.isInFrame(patch.halfsize))
break;
// compute interpolation weights
patch.computeInterpWeights(); // set ROI in the current image to traverse
patch.setRoi();
// loop through search_patch, interpolate
uint8_t* it_ref = ref_patch;
float* it_ref_dx = ref_patch_dx;
float* it_ref_dy = ref_patch_dy;
uint8_t* ptr; // pointer that will point to memory locations of the ROI (same memory as for the original full cur_img)
// float new_chi2 = 0.0;
Vector3f Jres; Jres.setZero();
for(int y=; y<patch.size; ++y)
{
// get the pointer to first element in row y of the patch ROI
ptr = patch.roi.ptr(y);
for(int x=; x<patch.size; ++x, ++ptr, ++it_ref, ++it_ref_dx, ++it_ref_dy)
{
float search_pixel = patch.wTL*ptr[] + patch.wTR*ptr[] + patch.wBL*ptr[cur_step] + patch.wBR*ptr[cur_step+];
float res = search_pixel - *it_ref + mean_diff;
Jres[] -= res*(*it_ref_dx);
Jres[] -= res*(*it_ref_dy);
Jres[] -= res;
// new_chi2 += res*res;
}
} /*
if(iter > 0 && new_chi2 > chi2)
{
#if SUBPIX_VERBOSE
cout << "error increased." << endl;
#endif
u -= update[0];
v -= update[1];
break;
}
chi2 = new_chi2;
*/
update = Hinv * Jres;
u += update[];
v += update[];
cur_px_estimate = Vector2d(u,v);
mean_diff += update[]; #if SUBPIX_VERBOSE
cout << "Iter " << iter << ":"
<< "\t u=" << u << ", v=" << v
<< "\t update = " << update[] << ", " << update[]
// << "\t new chi2 = " << new_chi2 << endl;
#endif if(update[]*update[]+update[]*update[] < min_update_squared)
{
#if SUBPIX_VERBOSE
cout << "converged." << endl;
#endif
converged=true;
break;
}
} cur_px_estimate << u, v;
return converged;
}

//为当前创建新的点特征,并在此图像中使用精确(对齐)的位置坐标

  PointFeat* new_feature = new PointFeat(frame.get(), px_est, matcher_.search_level_);
frame->addFeature(new_feature);

在这里,我们将特征中的引用添加到3D点,只有在选择此帧作为关键帧时才进行另一种方式。


  if(pt_ftr != NULL)
{
if(pt_ftr->type == PointFeat::EDGELET)
{
new_feature->type = PointFeat::EDGELET;
new_feature->grad = matcher_.A_cur_ref_*pt_ftr->grad;
new_feature->grad.normalize();
}
}

尝试优化每个细分线段坐标

即使我们提前破坏,细胞的随机访问顺序也能确保特征的均匀分布(maxFts即将到达)

  for(size_t i=; i<gridls_.cells.size(); ++i)
{
if(refineBestCandidate(*gridls_.cells.at(gridls_.cell_order[i]), frame))
++n_ls_matches_;
if(n_ls_matches_ > (size_t) Config::maxFtsSegs())
break; // the random visit order of cells assures uniform distribution
// of the features even if we break early (maxFts reached soon)
}
/*for(auto it = lines_.begin(), ite = lines_.end(); it!=ite; ++it)
{
if(refine(it->ls,it->spx,it->epx,frame))
++n_ls_matches_;
if(n_ls_matches_ > (size_t) Config::maxFtsSegs())
break;
}*/
SVO_STOP_TIMER("feature_align");

特征细化结束