互斥锁和信号量都是操作系统中为并发编程设计基本概念,互斥锁和信号量的概念上的不同在于,对于同一个资源,互斥锁只有0和1 的概念,而信号量不止于此。也就是说,信号量可以使资源同时被多个线程访问,而互斥锁同时只能被一个线程访问
互斥锁在java中的实现就是 ReetranLock , 在访问一个同步资源时,它的对象需要通过方法 tryLock() 获得这个锁,如果失败,返回 false,成功返回true。根据返回的信息来判断是否要访问这个被同步的资源。看下面的例子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
public class ReentranLockExample {
private static int count = 0 ;
private static ReentrantLock reentrantLock = new ReentrantLock();
static class MyThread extends Thread{
@Override
public void run() {
super .run();
try {
while ( true ){
boolean result = reentrantLock.tryLock();
if (result){
System.out.println(Thread.currentThread().getName() + "get the lock success and run the syn code " + count ++);
reentrantLock.unlock();
} else {
System.out.println(Thread.currentThread().getName() + "get the lock failed and run the syn code " + count);
}
System.out.println(Thread.currentThread().getName() + "run the asyntronized code " + count);
Thread.sleep( 500 );
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args){
MyThread thread1 = new MyThread();
MyThread thread2 = new MyThread();
thread1.start();
thread2.start();
}
}
|
信号量相当于一个计数器,如果线程想要访问某个资源,则先要获得这个资源的信号量,并且信号量内部的计数器减1 ,信号量内部的计数器大于0则意味着有可以使用的资源,当线程使用完某个资源时,必须释放这个资源的信号量。信号量的一个作用就是可以实现指定个线程去同事访问某个资源。只需要在初始化 。
信号量在 Java中的实现是 Semaphore ,其在初始化时传入一个整型数, 用来指定同步资源最大的并发访问量
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
public class SemaphoreExample {
private static Semaphore semaphore = new Semaphore( 2 );
private String lock = "lock" ;
private static int count = 0 ;
static class MyThread extends Thread {
@Override
public void run() {
super .run();
try {
while ( true ) {
semaphore.acquire();
Thread.sleep( 500 );
System.out.println(Thread.currentThread().getName() + "get the lock success and run the syn code " + count++);
semaphore.release();
Thread.sleep( 500 );
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args){
MyThread thread1 = new MyThread();
MyThread thread2 = new MyThread();
MyThread thread3 = new MyThread();
thread1.start();
thread2.start();
thread3.start();
}
}
|
CountDownLatch 实现一个等待机制,在诸如 等待与会者到达后,开始会议的使用中。ConutDownLatch 在初始化中一个计数器,用来指定需要等待的个数。在并发编程中,所解决的需求就是,等待所有的线程到达某个点后。才开始进行下一步,有点类似于开会,只有当所有的与会人员都到齐后,会议才能开始
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
public class CountDownLatchExample {
private static CountDownLatch mCountDownLatch = new CountDownLatch( 3 );
static class MyThread extends Thread {
int awaitTime;
public MyThread( int i) {
this .awaitTime = i;
}
@Override
public void run() {
super .run();
try {
while ( true ) {
Thread.sleep(awaitTime);
System.out.println(Thread.currentThread().getName() + "arrived " );
mCountDownLatch.countDown();
mCountDownLatch.await(); //可以指定等待时间
System.out.println(Thread.currentThread().getName() + "start meeting " );
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args){
MyThread thread1 = new MyThread( 500 );
MyThread thread2 = new MyThread( 1000 );
MyThread thread3 = new MyThread( 2000 );
thread1.start();
thread2.start();
thread3.start();
}
}
|
总结
以上就是本文有关Java编程中的互斥锁,信号量和多线程等待机制实例详解的全部内容,希望对大家有所帮助。
原文链接:http://blog.csdn.net/feifeiwendao/article/details/52212719